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Covid-19 Testing
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 Accessibility: low efficient, expensive, labor-

consuming

[1] Kucirka, Lauren M., et al. "Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since

exposure." Annals of Internal Medicine (2020).

[2] Imran, Ali, et al. "AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app." arXiv preprint arXiv:2004.01275 (2020).

 Accessibility of X-ray or CT Scan: it needs a

radiologist to perform the diagnosis, and still requires

a visit to a well-equipped clinical facility [2].LFT, RT-PCR

CT Scan



Covid-19 Sounds
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Is it possible to detect COVID from 

human sounds Via MACHINE LEAENING?

A non-invasive and ubiquitous testing protocol, which would 
allow individual prescreening ‘anywhere’, ‘anytime’, in real-
time, and available to ‘anyone’.

✓ Lung is the main organ involved and infected by 

virus, which leads to some changes in respiratory 

sounds[3].

✓ Audio-based methods are promising in detecting 

cough-related disease like pertussis[4], croup[5], 

and tuberculosis[6].

[3] Hui Huang, et al. The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods[J]. medRxiv, 2020.

[4] R. X. A. Pramono, et al, “A cough-based algorithm for automatic diagnosis of pertussis,” PloS one, vol. 11, no. 9, 2016

[5] R. V. Sharan, et al “Automatic croup diagnosis using cough sound recognition,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 2, pp. 485–495, 2018.

[6] G. Botha, et al, “Detection of tuberculosis by automatic cough sound analysis,” Physiological measurement, vol. 39,no. 4, p. 045005, 2018



Data Collection
We develop an application



https://covid-19-sounds.org/en/index.html

April 2020

https://covid-19-sounds.org/en/index.html


Date collection App
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Sign-up survey

Demographics, Medical history,

Smoking history，etc.

Daily survey

✓ Symptoms: fever, loss of taste, etc.

✓ Testing state: positive, negative, 

never tested, etc.

✓ Sounds: breathing, cough and 

some voice.

COVID-19 Sounds App - University of 

Cambridge (covid-19-sounds.org)

https://www.covid-19-sounds.org/en/
https://www.covid-19-sounds.org/en/


Dataset
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• 53,449 audio samples 
• over 552 hours in total
• from 36,116 users
• 2,106 positive samples

Tong et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening.  NeurIPS Dataset Track 2021



Methodology and Results
What method do we use

How about the performance



Framework
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• Distinguish COVID-19 positive from negative

• AUC-ROC

• Sensitivity(TPR)

• Specificity(1-FPR) 



Spectrogram
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A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time.

High cross-zero rate 

corresponding to 

energy distributed in 

high frequency band

Short-time Fourier 

Transform (STFT), is 

used to determine the 

sinusoidal frequency and 

phase content of local 

sections of a signal as it 

changes over time.

https://en.wikipedia.org/wiki/Spectral_density
https://en.wikipedia.org/wiki/Frequencies


Dee Learning Model
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Jing et al. Sounds of COVID-19: exploring realistic performance of audio-based digital testing. npj Digital Medicine 2022.



Results
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*Sensitivity of LFT from individual studies ranged from 
37.7% (95% CI 30.6-45.5) to 99.2% (95% CI 95.5-99.9)

*A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS-CoV-2. BMC Infect Dis. 



Results of confounding factors
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▪ How to use the data?

▪ Random splitting?

▪ User-independent?

▪ Demographics?



Discussion
More Work



We are working on
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Machine v.s Doctor?

How to handle the data sensitivity?

Is the model robust in the wild?

How to realize continual monitoring?



Machine v.s Doctor
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• 24 audio samples (12 are tested positive) 

• 36 respiratory  clinicians

• The machine learning model outperformed the clinicians

Under-submission.



Machine v.s Doctor
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Our method outperforms clinicians. 



Machine v.s Doctor
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Uncertainty Estimation
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Tong et al. Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data. INTERSPPECH 2021.



Progression Prediction
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Model Training without Aggregating Data 
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Fig. 1. Cross-device FL for mobile health, where models are 

trained on edge devices from private health sensing data, and 

the global model is aggregated from the clients’ modelsSensitive !



An overview of the body sound analysis.
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Qian K, et al. The Voice of the Body: Why AI Should Listen to It and an Archive.

These body sounds can be collected via the prevalent microphone equipment and/or wearable devices. 
The sounds generated by our human body can reveal the health status in both physical and mental terms.
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