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Covid-19 Testing

O Accessibility: low efficient, expensive, labor-
consuming

’
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\ O Accessibility of X-ray or CT Scan: it needs a
| radiologist to perform the diagnosis, and still requires

LFT, RT-PCR a visit to a well-equipped clinical facility [2].




Covid-19 Sounds

A non-invasive and ubiquitous testing protocol, which would

allow individual prescreening ‘anywhere’, ‘anytime’, in real-
time, and available to ‘anyone’. Paranasal Sinuses

Nostril

Nasal Cavity Plus

IS IT POSSIBLE TO DETECT COVID FROM il / \ e i rimary
HUMAN SOUNDS VIA MACHINE LEAENING? Y ) \@’

Bronchus

“ x' Alveoli
v" Lung is the main organ involved and infected by L __ PR

virus, which leads to some changes in respiratory precl e
sounds|[3].

v" Audio-based methods are promising in detecting
cough-related disease like pertussis[4], croup[5],
and tuberculosis[6].

Respiratory System

[3] Hui Huang, et al. The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods[J]. medRxiv, 2020.

[4] R. X. A. Pramono, et al, “A cough-based algorithm for automatic diagnosis of pertussis,” PloS one, vol. 11, no. 9, 2016

[5] R. V. Sharan, et al “Automatic croup diagnosis using cough sound recognition,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 2, pp. 485-495, 2018.
[6] G. Botha, et al, “Detection of tuberculosis by automatic cough sound analysis,” Physiological measurement, vol. 39,no. 4, p. 045005, 2018 4



Data Collection

We develop an application
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L COVID-19 Sounds App

Upload short recordings of cough and breathing and report symptoms to
help researchers from the University of Cambridge detect if a person is
suffering from COVID-19. Healthy and non-healthy participants welcome.
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Date collection App

COVID-19 Sounds

COVID19 Sounds

Press 'record' below and
breathe in and out from your
mouth as deeply as you can
five times. Please do so in

a quiet environment. Then
press 'stop’.

RECORD DELETE

This app aims to collect data (primarily
coughs, breathing and voice) as part of a
project (covid-19-sounds.org) which could

inform the diagnosis of COVID-19. ||

0

The app will collect basic demographicﬁ,'g

medical history, some voice samples

(while you read text on the screen) and a

few seconds of breathing and coughing.
We also collect one sample of your

location.

L

‘:' UNIVERSITY OF
4% CAMBRIDGE

; Sign-up survey Z

Demographics, Medical history,
Smoking history, etc.

S Daily survey Z

v’ Symptoms: fever, loss of taste, etc.

v Testing state: positive, negative,
never tested, etc.

v' Sounds: breathing, cough and
some voice.

COVID-19 Sounds App - University of
Cambridge (covid-19-sounds.orq)
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Dataset

« 53,449 audio samples
« over 552 hours in total
« from 36,116 users

« 2,106 positive samples
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Methodology and Results

What method do we use

How about the performance



Framework
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Spectrogram

High cross-zero rate
corresponding to

energy distributed in
high frequency band

1\743\

Short-time Fourier
Transform (STFT), is
used to determine the
sinusoidal frequency and
phase content of local
sections of a signal as it
changes over time.

Frequency (kHz)

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time.
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Dee Learning Model

A 4

2,478 participants with 5,240 samples used

— — ) ) - A balanced group: 100 vs. 100
Training&validation set: 400 posi- | |Testing set pool: 114 positive
tive vs. 400 negative participants vs. 1,564 negative participants Other groups: ~114 vs. ~1,564
Cough ]
- VGGish [+|Pooling i 3 3
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gl ol X |o]| |
. o 8| |2~ |&
\oice = = Binary Diagnosis
- VGGish [-+|Pooling
Input Layers Feature Extraction Layers Prediction Layers

Fig. 5 Overview architecture of the deep learning model. A convolutional neural network using cough, breathing, and voice sounds as
input, to predict COVID-19 as a binary outcome. VGGish is a neural network pre-trained on the Audioset dataset, Pooling is an aggregation
operator, Dense is a fully connected neural network layer, Dropout is a randomised operation that reduces overfitting, ReLU is a rectified linear
unit activation, Softmax is the logistic function.

Jing et al. Sounds of COVID-19: exploring realistic performance of audio-based digital testing. npj Digital Medicine 2022.
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Results

a. b.
1.0 ROC-AUC Sensitivity Specificity
Breathing only 0.62(0.56-0.68) 0.64(0.56-0.71)  0.56(0.48-0.63)
Cough only 0.66(0.60-0.71)  0.59(0.51-0.66) 0.66(0.58-0.73)
0.81 Voice only 0.61(0.55-0.67) 0.57(0.49-0.64) 0.60(0.52-0.67)
All modalities 0.71(0.65-0.77) 0.65(0.58-0.72) 0.69(0.62-0.76)
>
§0.6 C.
'45; Subgroup #Pos./Neg. ROC-AUC Sensitivity Specificity
0C)0_4« Gender
n Male 58/52 0.71(0.63-0.78)  0.59(0.49-0.68)  0.74(0.63-0.83)
" === Chance (AUC=0.5) Female 42/46 0.73(0.65-0.80)  0.71(0.61-0.81)  0.65(0.55-0.75)
L Breathing (AUC=0.62) Age
0.2] y Cough (AUC=0.66) 16-39 55/54 0.65(0.56-0.73)  0.57(0.46-0.68)  0.65(0.55-0.75)
y - Voice (AUC=0.61) 40-59 36/34 0.76(0.67-0.85)  0.72(0.61-0.82)  0.68(0.55-0.81)
00l F — Al modalities (AUC=0.71) go- 4 /6 0.91(0.77-1.0)  0.88(0.60-1.0)  0.88(0.69-1.0)
' ' ‘ [ ' ' ymptom
0.0 0.2 0.4 0.6 0.8 1.0 Asymptomatic 18/73 0.75(0.60-0.88)  0.50(0.25-0.76)  0.85(0.77-0.92)
1-Specificity Symptomatic  144/89 0.66(0.59-0.73) 0.67(0.59-0.74) 0.56(0.45-0.66)

Fig. 2 Model performance. a Receiver-operating characteristic curve for the binary classification task of diagnosing COVID-19. b ROC-AUC,
sensitivity and specificity with 95% confidence intervals in brackets for the combination of all modalities or each single modality separately.
¢ Subgroup performance comparison under three modalities. For gender and age group, # denotes the number of unique positive/negative
participants. Note that some participants provided multiple samples, which could be either asymptomatic or symptomatic.
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Results of confounding factors

a.data splitting

1.0
How to use the data? 0.9] mm specifcity
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Fig. 4 Performance comparison. Sensitivity (blue) and specificity (pink) are presented with sold liner showing the 95% Cls. If not particularly
mentioned, the results are based on the combination of three sound types. a User-independent splits vs. sample-level random splits: (Seen)
denotes the performance on samples whose other samples were used for training, otherwise the performance is notated by (Unseen).
b Controlled demographics vs gender bias: (Female) denotes the female subgroup. ¢, Controlled demographics vs two types of gender biases:
all negative participants in training set aged over 39 or under 39. (Aged 60-) and (Aged 16-39) denote the elder and the younger subgroup.
d-f Model for English-speakers vs model for biased English- and Italian-speakers: (En) and (It) denote two subgroups from the testing set.
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Discussion

More Work




We are working on

Is the model robust in the wild?

00

How to handle the data sensitivity?

Machine v.s Doctor?
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How to realize continual monitoring?
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Machine v.s Doctor

A comparative study of listening performance for COVID-19
between clinicians and machine learning

Jing Han'* Marco Montagna? Andreas Grammenos! Tong Xial
Erika Bondareval Chloé Siegele-Brown® Jagmohan Chauhan® Ting Dang!
Dimitris Spathis? Andres Floto! Pietro Cicutal Cecilia Mascolo®

LUniversity of Cambridge, UK
?Vita-Salute San Raffaele University, Italy

SUniversity of Southampton, UK
* Corresponding author: jh2298@cam.ac.uk

« 24 audio samples (12 are tested positive)
« 36 respiratory clinicians
« The machine learning model outperformed the clinicians

Under-submission.
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Machine v.s Doctor

Table 1: Performance comparison on 36 doctors and our deep learning-based model in terms of sensitivity
(se), specificity (sp), and accuracy (acc), with 95% confidence intervals (CI) reported in brackets. Best
performance of one clinician and our model in terms of accuracy is highlighted.

Usia ace se sp | Usia ace se sp
ID-1 .29(.12-.46) 12(.14-.70) 17(.00-.40) | ID-2 5H4(.33-.75) .50(.21-.80) 58(.30-.86)
1D-3 .25(.08-.42) 33(.08-.62) .17( 00-.40) | ID-4 33(.17-.54) .25(.00-.50) A2(.13-.70)
1D-5 A46(.29-.67) 50(.22-.79) 42(.14-.73) | ID-6 42(.21-.62) .33(.08-.64) 50(.22-.78)
1D-7 A6(.29-.67) 50(.22-.79) 42(.14-.73) | ID-8 62(.42-.79) .75(.50-1.0) .50(.21-.75)
1D-9 .25(.08-.42) 33(.08-.62) 17(.00-.40) | ID-10 .()2( 42-.79) 75(.50-1.0) 50(.21-.75)
ID-11 33(.17-.54) .25(0)- 50) A42(.13-.70) | ID-12 (21 62) .33(.08-.64) 50(.22-.78)
1D-13 .54(.33-.75) .50( -.80) 58(.30-.86) | ID-14 42(.21-.58) .25(.00-.50) .H8(.31-.85)
1D-15 .54(.33-.75) 83(.60-1.0) 25(.00-.50) | ID-16  .50(.33-.71) 33(.08-.62) .67(.38-.92)
ID-17 .50(.33-.71) .33(.08-.62) 67(.38-.92) | ID-18  .62(.42-.83) .58(.30-.88) 67(.38-.92)
1D-19 .H8(.38-.79) 5H0(.21-.77) 67(.10-.92) | ID-20  .62(.42-.83) .H8(.30-.88) 67(.38-.92)
1D-21 .58(.38-.79) 50(.21-.77) 67(.40-.92) | ID-22  .50(.29-.71) 75(.50-1.0) .25(.00-.53)
1D-23 .54(.33-.75) A42(.14-.71) 67(.38-91) | ID-24 .a()( 29-.71) 50(.18-.78) .50(.20-.80)
1D-25 .62(.42-.83) 50(.20-.78) 75(.50-1.0) | ID-26 54(.38-.75) .33(.08-.62) 75(.50-1. U)
1D-27 .50(.29-.71) .o( (\18-.78) 50(.20-.80) | ID-28 46(.29-.67) A42(.12-.70) .50(.22-.75)
1D-29 .29(.12-.46) 42(.14-.70) 17(.00-.40) | ID-30 .()2( 42-.79) 75(.50-1.0) 50(.21-.75)
1D-31 .H8(.38-.79) 42(.12-.71) 75(.50-1.0) | ID-32 H8(.38-.79) 58(.29-.86) .H8(.31- &))
1D-33 50(.29-.71) 33(.08-.62) 67(.38-.92) | ID-34 .o()( 29-.71) .33(.08-.62) .67(.38-91)
1D-35 .62(.42-.83) 58(.27-.85) 67(.42-.92) | ID-36 .71(.50-.88) 67( 36-.92) .75(.50-1.0)
our Model .79(.62-.92) .75(.46-1.0) .83(.58-1.0) |

Our method outperforms clinicians.
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Machine v.s Doctor
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Figure 4: COVID-19 positive breath, cough, and voice recordings from two samples (08 and 18) and the
reported cues from one of the clinicians.
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Uncertainty Estimation

Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data

Tong Xia, Jing Han, Lorena Qendro, Ting Dang, Cecilia Mascolo

Department of Computer Science and Technology, University of Cambridge, UK
tx229@cam.ac.uk
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Tong et al. Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data. INTERSPPECH 2021.
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Progression Prediction

¥ Exploring Longitudinal Cough, Breath, and Voice

cussianss Wl Data for COVID-19 Progression Prediction via
| - Sequential Deep Learning: Model Development and
*  Validation
Ting Dang ' @; Jing Han 1 ©@; Tong Xia ' ©@; Dimitris Spathis 1 &; Erika Bondareva '
Chloé Siegele-Brown 1 ; Jagmohan Chauhan 1,2 ; Andreas Grammenos 1 ;
Apinan Hasthanasombat T{®: R Andres Floto 1 ©@: Pietro Cicuta 1 ©2; Cecilia Mascolo
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Model Training without Aggregating Data

Sensitive !

_ DataD! Modelg! | Data D? Model 62 | . Data D¥ Model 0"”

Yo @ Deployment | o) |
I General population
> Qfa\‘(\o
e° | | |

Client 1 Client 2 Client N

Fig. 1. Cross-device FL for mobile health, where models are
trained on edge devices from private health sensing data, and
the global model is aggregated from the clients’ models
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An overview of the body sound analysis.

Snore sound

Lung sound

i

Bowel sound

|

Joint sound

These body sounds can be collected via the prevalent microphone equipment and/or wearable devices.
The sounds generated by our human body can reveal the health status in both physical and mental terms.

Qian K, et al. The Voice of the Body: Why Al Should Listen to It and an Archive.
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Thank you!

\@ °4

Tong Xia
https://xtxiatonqg.qgithub.io/
tx229@cam.ac.uk



https://xtxiatong.github.io/
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