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DeepApp: Predicting Personalized Smartphone App Usage

via Context-Aware Multi-Task Learning
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Smartphone mobile application (App) usage prediction, i.e., which Apps will be used next, is beneficial for

user experience improvement. Through an in-depth analysis on a real-world dataset, we find that App usage

is highly spatio-temporally correlated and personalized. Given the ability to model complex spatio-temporal

contexts, we aim to apply deep learning to achieve high prediction accuracy. However, the personalization

yields a problem: training one network for each individual suffers from data scarcity, yet training one deep

neural network for all users often fails to uncover user preference. In this article, we propose a novel App

usage prediction framework, named DeepApp, to achieve context-aware prediction via multi-task learning.

To tackle the challenge of data scarcity, we train one general network for multiple users to share common

patterns. To better utilize the spatio-temporal contexts, we supplement a location prediction task in the multi-

task learning framework to learn spatio-temporal relations. As for the personalization, we add a user identi-

fication task to capture user preference. We evaluate DeepApp on the large-scale dataset by extensive exper-

iments. Results demonstrate that DeepApp outperforms the start-of-the-art baseline by 6.44%.
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1 INTRODUCTION

With the ever-increasing prevalence of smartphones, mobile applications (Apps) become increas-

ingly popular, and they are considered as necessary entries to access daily online services such

as communication, shopping, navigation, and entertainment. As the number of available Apps

increases rapidly, predicting users’ App usage, i.e., which App will be used next, has become in-

creasingly important. It can help smartphone developers and network providers better manage

battery energy consumption, pre-load Apps into the memory, and cache necessary resources in

advance to significantly improve user experience [28].

Smartphone App usage prediction is beneficial but challenging. First, sequential regularity in

App usage is complex, as the next-used App can be influenced by previously used Apps in a long

or short time interval. For example, Taobao1(20:05)-WeChat(20:30)-Taobao2(21:20)-AliPay(21:30) are

four Apps used chronologically, showing that the user first views goods on Taobao for about

25 minutes, then talks with his friends on WeChat in the following 50 minutes, returns to Taobao

for another 10 minutes, and finally pays for the selected goods by Alipay. Therefore, Taobao2 de-

pends on its prior use of Taobao1 an hour ago instead of WeChat. But Alipay is more likely to

be caused by Taobao2. Second, App usage is highly correlated to spatio-temporal contexts. For

instance, a user opens Toutiao for news every morning but uses AMap for navigation in a metro

station. These sequential regularity and spatio-temporal correlations are complexand difficult to

capture by traditional methods such as Markov [14, 15] and Bayes [8, 19].

Luckily, deep learning provides a promising computational framework for solving complicated

tasks, which inspires us to develop deep neural networks for App usage prediction. However,

through an in-depth analysis on a large-scale real-world dataset, we find that App usage is not only

spatio-temporally correlated but also highly personalized, i.e., users install their preferred Apps of

each category and have different usage preference on the same Apps. This personalization yields

a challenging problem for deep learning. When we train one deep neural network for all users, it

often fails to uncover user preference and thus leads to low accuracy. But if we train one network

for each individual, it would be unreliable because the personal data is often scarce, so that the

insufficient data will aggravate the influence of random factors such as noise on the model [18, 23].

In this article, we seek to build an accurate smartphone App usage prediction model through

deep learning for large-scale users. Specifically, we propose a multi-task learning–based frame-

work, named DeepApp, to predict the next-used Apps from historical App usage with spatio-

temporal contexts. To tackle the challenge of data scarcity, we train one general network for mul-

tiple users with insufficient personal data, where the embedding module and feature-extracting

module to capture the complex sequential regularity are shared. To better utilize the spatio-

temporal contexts, we supplement a location prediction task, i.e., to predict the location visited

next, as a fake task in the multi-task learning framework. By supervising location prediction at

the output side rather than merely using it as an input feature, the relation among time, location,

and App is learned more explicitly. With regard to the personalization, we design a user identifi-

cation task, i.e., to distinguish one from others by the historical App usage, as another fake task

to capture user preference. As such, although being shared by all users, our model can sensitively

recall user preference with limited input of historical usage.

Our contributions can be summarized as follows:

• We conduct an in-depth analysis on a large-scale real-world App usage dataset and find

that smartphone App usage is spatio-temporally correlated and personalized. Based on

these findings, we propose a context-aware multi-task learning framework—DeepApp—to

achieve accurate App usage prediction.
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Table 1. Examples of App Usage Data

User ID Timestamp Base Station ID App ID

0000001 20160420090604 3610*****33 1 (WeChat)

0000002 20160420130513 3610*****F2 10 (AMap)

0000002 20160421233406 3610*****C1 1034 (TaoBao)

Fig. 1. An illustration of the prediction problem, where a user’s four consecutive App usage sessions are

known as history to predict the Apps that will be used in s5.

• We propose a novel solution to tackle the dilemma raised by data scarcity and personal-

ization, which is training one model for multiple users with user identification task. The

general model is more robust, as the designed fake task enables it to better capture user

preference.

• We perform extensive experiments to evaluate our model via the real-world dataset. Results

demonstrate that DeepApp achieves significant improvements of 6.44% compared with the

state-of-the-art baseline.

2 DATASET AND PROBLEM DEFINITION

2.1 Dataset

We use a real-world App usage dataset collected in Shanghai, China, with a duration of 1 week

(April 20–26, 2016) [4, 21, 23]. Each record of the dataset is characterized by an anonymous user ID,

timestamp, base station ID, and the used App ID. After filtering the abnormal users whose records

are missed more than 30%, we finally obtain a dataset covering 10,000 users, 9,800 base stations,

and 1,785 Apps. Table 1 describes the data format, where three records from two users are given

as examples.

2.2 Problem Definition

Our goal is to predict the Apps that a user will use in the next time slot given his historical records.

To better illustrate this problem, we first formally give the relevant definitions as follows.

Definition 1 (App Usage Session).AnApp usage session refers to the Apps useru used in a specific

time slot. We denote his n-th App usage session as sn = (tn , ln ,an ), where ln is the location visited

and an is the App sets used in time tn .

Definition 2 (App Usage Sequence). App usage sequence is the consecutive App usage sessions

of one user in a given time window, e.g., 1 day. The user’sw-th App usage sequence is denoted by

Sw = (sw1 , s
w

2 , s
w

3 , . . . , s
w
n ), where s

w
n is n-th the App usage session in thew-th time window.

As illustrated in Figure 1, we formally define our problem as follows.

App Usage Prediction Problem: Given the historical App usage sequence Sw =
(sw1 , s

w

2 , s
w

3 , . . . , s
w
n ) with previous n sessions of one user, to predict the Apps aw

n+1 to be used

next in the (n + 1)-th time slot.
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Fig. 2. Visualization for spatio-temporal characters and user preference.

2.3 Motivation

To inspire the solution of an accurate prediction model, we conduct in-depth analysis on our

dataset. The findings are summarized as follows:

(1)App usage has complex correlations with spatio-temporal contexts. To inspect whether time and

location are helpful for App usage prediction, we first analyze their relationship.We represent each

time slot and location by an App usage vector, which denotes the corresponding usage count of

each App. Then we conduct principal component analysis (PCA) to reduce these vectors to two

dimensions and show the results in Figure 2(a) and (b), respectively. Each point denotes one time

slot or one location. We can observe that as marked by the red circle, there are some clusters in

both time slots and location distribution because they have a similar App usage pattern. Especially,

time slots in the morning, afternoon, evening, and night form different clusters in Figure 2(a),

indicating that App usage is spatio-temporally correlated. At the same time, we make a more

detailed comparison to see how App usage varies with time and location. Figure 2(d) and (e) depict

the aggregated App usage for 50 Apps and 50 locations that are randomly selected. In this figure,

the darker the color, the more frequently the corresponding App is used [20]. Difference can be

observed among different rows, although they have some similar patterns. In summary, the spatio-

temporal correlations are complex. To improve prediction performance, we need to better utilize

them.

(2) App usage is also highly personalized. To understand individual App usage patterns, we an-

alyze user–Apps interaction by connecting overall App usage sessions into one vector. We also

conduct PCA on the vectors and show the result in Figure 2(c). Unlike time and location, there are

no obvious separate clusters, which means diverse App usage behaviors. In addition, we show the

summed App usage of 50 selected users in Figure 2(f), fromwhich we can observe that usage count

across different Apps varies with users; even for the most popular App WeChat, as shown in the

first column, its usage counts presented by the depth of color are different, thereby indicating that

App usage is highly personalized. This also has been demonstrated by previous works [2], in that

App usage depends on one’s career to a great extent [29]. Those results tell us that when training

one general model for multiple users, it is important to capture user preference.
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Fig. 3. Data statistic.

Fig. 4. Main architecture of DeepApp.

(3) Personal data is insufficient. From Figure 2(d) through (f), we can observe that the time-App,

location-App, and user-App matrix are sparse. This is because the the interaction between users

and Apps in different time slots and locations is uneven, which leads to data scarcity. Indeed, as

shown in Figure 3(a), the usage count of each App follows Zipf’s law, where the most frequently

used 10 Apps including WeChat take up 19.7% of the total usage. However, as presented in

Figure 3(b), more than 50% of the users are recorded in more than 15 locations and 31 Apps. This

means that for most of the Apps and locations, the number of records for each user is extremely

limited. Therefore, training one model for each individual is difficult to achieve high accuracy

because personal data is too scarce to learn meaningful usage patterns.

To conclude, the spatio-temporal correlations and the difficulty to capture user preference from

sparse individual data need to be better handled when designing the prediction model.

3 METHOD

3.1 Model Design

Inspired by the preceding findings, we propose DeepApp, a context-aware App usage prediction

model, as shown in Figure 4. First of all, considering the complex temporal patterns, we integrate

the time, location, and App in the embedding space, where high-order sequential regularity can

be better modeled by the following GRU module. For the spatial context, besides using historical

locations as input, we predict the next location to enhance the relations. In addition, to extract

personalized features from the scare data, we design a user identification task combined with App

usage prediction at the same time.

3.1.1 Embedding Module. The input of this module is historical App usage session sequence

[{(tw1 , lw1 ,aw1 ) , . . . ,(twn , lwn ,awn )}], where twn and lwn are one-hot vector, whereas awn is multi-hot vec-

tor because multiple Apps would be used during each time slots. For each session, time twn , location
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lwn , and Apps awn are first embedded into dense-represented vectors [28]. Compared with the lim-

ited one-hot or multi-hot representation, the dense representation can better capture the precise

semantic relationship of different contexts. For App embedding, we adopt Doc2Vec [11], which

treats each App as a word and each session as a sentence. We embed each App separately and then

add them up. The embedding vector of historical time, location, and Apps is contacted, which is

denoted by cwn as the output of this module.

3.1.2 Feature-Extracting Module. This module aims to capture the high-order sequential regu-

larity hidden in the historical App usage sequence. We select the GRU as the basic recurrent unit

because of its effectiveness to memory both long-term and short-term dependence. This module

takes the contacted App usage embedding vector cwn as input and outputs the hidden state hwn step

by step. It is worth noting that before the GRU, the contacted App usage embedding vector is first

fed into a drop-out layer in the training process to avoid overfitting. To transfer the relation among

App usage, time context, and location context with each other, we share the recurrent module for

user identification, location prediction, and App prediction tasks instead of training independent

GRUs.

3.1.3 Predicting Module. The predicting module is designed to complete multi-tasks with three

separate branches: App usage prediction, location prediction, and user identification. Since App

usage prediction is our target, the other two tasks are used as fake tasks for context awareness

and personalization. These three tasks are based on the same embedding module and feature-

extracting module to share spatio-temporal App usage patterns but have separate output layers in

parallel because of the different outputs. Specifically, to utilize the learned features from the formal

module, each branch consists of a linear layer and a nonlinear activation layer. The linear layers

are fully connected layers to process the features into a smaller and more expressing vector, and

changes the size of the hidden state to match the needed output size. Yet the nonlinear activation

layers are softmax or sigmoid, respectively. The activation function rescales the outputs to correct

values for prediction.

3.2 Loss and Training

Due to data scarcity, we train one general model for multiple users with three tasks simultaneously.

The training goal is to minimize the divergence between the predicted distribution and the true

distribution. All of these tasks can be regarded as a classification problem. Thus, we adopt cross-

entropy loss for each task [16] and denote the loss for App usage prediction, user identification,

and location prediction as Ja , Ju , and Jl , respectively. To train them jointly, we take the overall loss

J of these three tasks with different weights as follows:

J = Ja + λ1 Ju + λ2 Jl , (1)

where λ1 and λ2 are the weight factor for user identification and location prediction, respectively.

Algorithm 1 outlines the training process of DeepApp. We first generate the training instance by

taking each user’s App usage sequence in a given time window as one mini-batch, then we use

backward propagation through time (BPTT) and Adam to train the model step by step.

4 EXPERIMENTS

4.1 Experiment Setup

To evaluate DeepApp, we compare it with the following five baselines by the real-world dataset:

• MRU [19]: This method takes the most recently used Apps, i.e., the Apps used in last time

slots, as prediction. It assumes that most Apps are used across several time slots continually.
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ALGORITHM 1: Training algorithm for DeepApp

Input: App usage sequences: {S1,u1 , S2,u1 , . . . , Sw,u1 , . . . , SW ,uMu };
Output: Trained ModelM.

//construct training instances: D ←− ∅
for u ∈ {u1, . . . ,uMu

} do
forw ∈ {1, 2, . . . ,W } do

put a training instance (u,w, Sw ) into D
// train the model: initialize the parameters θ
for i ∈ {1, 2, . . . ,EPOCH } do

select instance Du
w withw for user u from D;

update θ by minimizing the objective with Du
w ;

stop training when criteria is met;

output trained modelM

• MFU [19]: This method counts the users’ App usage history and selects themost frequently

used K Apps. This is the straightforward method for prediction, which does not use time

and location context.

• HA [8]: This method takes the average App usage in the target time slots of historical days

as prediction. This is also a straightforward method but considers the time context.

• Bayes [8]: Bayes takes the time of day, last-used App, and last visited location as features

to learn a Bayesian network, and these features are modeled independently. Apps with the

highest probability of the given time and location are taken as prediction.

• AppUsage2Vec [28]: AppUsage2Vec models App usage by considering the contribution of

different apps, user personalized characteristics, and temporal context jointly, where per-

sonalization is handled by combining the user vector and App sequence vector. It is a state-

of-the-art deep learningmodel for App usage prediction, but it does not use location context.

We also compare DeepApp with its variations:

• Individual: This trains one model for each user.

• Unified: This trains one model for all users without the user identification task.

• Forward: This trains one model for all users without the user identification task but com-

bines user embedding with App usage characters for personalization as previous works

do [6, 12, 13].

• Backward: This trains one model for all users with user identification, i.e., the complete

DeepApp.

• DeepApp-Loc: This is a DeepApp model without location throughout.

• DeepApp-LocPre: This is a DeepApp model with location prediction in the last module

removed.

We rank the Apps by the output distribution of the App usage prediction task and take the topK
Apps as predictions. We use mean average precision (MAP) and area under the ROC curve (AUC),

two commonly used global evaluations for ranking task [13], as metrics. We also use recall score

of top K Apps (R@K) [28] for comparison. In a parameter study, we report the accuracy of top K
locations and users [6]. For all of these metrics, the larger the value, the better the performance.

We pre-process our dataset into App usage sequence according to Definition 2 with a time

interval of 30 minutes and time window of 24 hours for the 5 working days. After that, we sort

each user’s sequence by date and take the first 3 days as the training set, the fourth day as the

validation set, and the last day as the test set. Experiments are implemented on a GPU by PyTorch,
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Table 2. Default Parameter Settings

Training Settings Value Feature (Size) Input Output Training Settings Value Feature (Size) Input Output

Learning rate (lr) 1e-4 Location ≈10000 256 λ1, λ2 0.2, 0.2 App ≈2000 512

Decay of lr 0.1 Time 48 16 Typical user number 10,000 Hidden state {544,800} {512, 640}

Table 3. Comparison Among Different Baselines

with Our Model, Where ΔMAP Is the

Relative Improvement

Model R@5 AUC MAP ΔMAP

MRU 0.4180 0.7017 0.3747 31.38%

MFU 0.5916 0.8070 0.3770 30.98%

HA 0.5393 0.7957 0.4804 12.05%

Bayes 0.5439 0.8038 0.4957 9.24%

AppUsage2Vec 0.5604 0.9566 0.5110 6.44 %

DeepApp 0.6095 0.9725 0.5462 —

The best result in each column is bold, while the second is

underlined.

Table 4. Comparison Among Variants of DeepApp

Metric Individual Unified Forward Backward/DeepApp DeepApp-Loc DeepApp-LocPre

R@5 0.4676 0.5082 0.5698 0.6095 0.5721 0.5828

AUC 0.9523 0.9679 0.9611 0.9725 0.9643 0.9706

MAP 0.4302 0.4522 0.5179 0.5462 0.5288 0.5305

and the default training settings are summarized in Table 2. For every method, we carefully tune

the parameters to report the best performance.

4.2 Results

4.2.1 Overall Comparison. We first give the overall performance comparison in Table 3. We can

observe that DeepApp achieves the best performance across all metrics. Among these baselines,

MFU achieves the highest R@5 and AppUsage2Vec achieves the highest AUC and MAP, whereas

DeepApp achieves a relevant improvement of 3.03%, 1.67%, and 6.44%, respectively. MRU and HA

only utilize the temporal context directly and thus perform the worst. MFU achieves the higher

R@5 because of the head effect of App usage as shown in Figure 3(a). Although Bayes utilizes dif-

ferent contexts, it treats them independently, leading to limited improvement compared with other

traditional methods. With regard to the deep learning method AppUsage2Vec, its global metrics

AUC and MAP are higher than other baselines, but its local metric R@5 is lower. This is because it

captures more complex sequential regularity in App usage. However, since it trains one model for

large-scale users, its ability to capture personalized features is weaker than an individual model

like MFU. In addition, it does not utilize location, so it cannot achieve higher accuracy. In contrast,

the remarkable performance improvement achieved by DeepApp shows the superiority of our

model for better modeling complex spatio-temporal correlations and capturing user preference.

4.2.2 Ablation Study. To demonstrate the effectiveness of our design of the user identification

task to capture user preference, we compare DeepAppwith its variants in Table 4. From the results,
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Table 5. Effect of λ1 and λ2

λ1 λ2 MAP(App) ACC@1(User) ACC@1(Loc)

0.1

0.05

0.5377 0.9164 0.4744

0.2 0.5402 0.9182 0.4599

0.5 0.5355 0.9224 0.4581

1 0.5368 0.9263 0.4621

0.2

0 0.4964 0.8922 0.3599

0.2 0.5462 0.9292 0.4802

0.5 0.5345 0.9256 0.4820

1.0 0.5200 0.9303 0.4881

we can observe that individual model performance is worse because of data scarcity. The unified

model also cannot achieve high accuracy because it is user independent. By utilizing the user

embedding as a proxy of user preference, which is the same as most previous works do, forward

model outperforms the individual and unified model. It trains one network for all users, but user

embedding vectors are not shared, so it can deal with data scarcity and user preference. However,

as user App usage behaviors are dynamic and dependent with spatio-temporal contexts, the ability

to model user preference by a static user embedding vector is limited. In contrast, DeepAppmodels

such dynamic preference in the backward propagation, which enforces RNNparameters to bemore

sensitive to different users.

When removing location from the input and output of our model, performance declines signif-

icantly as shown by DeepApp-Loc, which means that spatial context does help predict users’ App

usage behaviurs. However, it is worth noting that even without location, our model outperforms

AppUsage2Vec, which also demonstrates the superiority of the user identification task. We can

further observe that DeepApp-LocPre fails to achieve noticeable performance gain compared with

DeepApp-Loc. This delivers the message that the location prediction task holds the key to fully

exploit spatial-temporal correlations for better App usage prediction.

4.2.3 Parameter Tuning for Multi-Task Learning. Joint training of multi-task can become biased

toward one specific task. Considering that App usage prediction is our goal, we carefully tune the

weighting factors λ1 and λ2 in Equation (1). In this study, we adjust these two weights one after the
other. Table 5 shows the performance of App prediction in terms of MAP, user identification, and

location prediction in terms of ACC@1. When fixing the loss weight of location prediction λ2 at a
small value of 0.05, the performance of user identification shown by ACC@1(User) gets better with

the increase of λ1. However, when λ1 exceeds 0.2, MAP(APP) degenerates dramatically because the

model becomes biased to the user identification task. Intuitively identifying users can help improve

the performance of App prediction, and an excessive user identification accuracy may reduce the

performance of App usage prediction especially when new Apps are used. Therefore, we select

λ1 = 0.2 and then traverse different values of λ2. Similarly, the accuracy of location prediction

increases with λ2 andMAP(App) rises first and then falls with a maximum of 0.5862 when λ2 = 0.2.
Therefore, the best setting of λ1 and λ2 is 0.2 and 0.2.

5 RELATEDWORK

App usage prediction. Existing App usage prediction methods can be divided into Markov, Bayes,

and deep learning three main lines [2]. Markov [14, 15] learns the order of different Apps used and

predicts the next App based on the last-used App. It aims to model the sequential regularity in

historical records but fails to utilize temporal and spatial context, i.e., when and where to use
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these Apps. Compared with Markov, Bayes [8, 19] exploits spatio-temporal contexts by learning

the probability of using different Apps given the last-used Apps, the time, and the location. How-

ever, its improvement is limited by modeling different contexts independently. The deep learning

model—AppUsage2Vec [28]—measures the contribution of Apps previously used to the target one

by an attentionmechanism and considers user characters by a dual-DNNmodule. In addition, Shen

et al. [17] recently proposed to predict App usage by reinforcement learning. However, most of the

models are evaluated on a small-scale dataset (tens or hundreds of users), except in the work of

Zhao et al. [28] (8,739 users). In addition, existing deep learning models [17, 28] all ignore utilizing

helpful spatial contexts. In contrast, we propose a context-aware prediction model and evaluate it

on 10,000 users.

Location prediction. Location prediction is a longstanding problem and has received consistent

attention from researchers and industries. It also can be divided into traditional and deep learning–

based methods. In early years, individual and group Markov methods were proposed to model

location transition [3, 7, 25]. Recently, deep learning–based methods utilized the RNN [6, 13, 27],

attention mechanism [5, 6], and memory network [10] to better capture the spatial-temporal cor-

relations. The success of these models encourages us to design a deep learning model for App

usage prediction. However, they are limited in extracting personalized features, and to the best

of our knowledge, we are the first to propose user identification to tackle this problem, thereby

improving performance.

Multi-task learning. Multi-task learning is a sub-field of transfer learning in which multiple

learning tasks are solved at the same time while exploiting commonalities and differences across

tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific

models when compared to training the models separately [1, 26]. It has been applied in image

recognition [9], NLP [24], and travel time estimating [22]. For user modeling, knowledge learned

from different but relevant tasks can be promotedmutually. For instance, Liao et al. [12] predict the

next-visited location and point of interest simultaneously to achieve higher accuracy. Similarly, in

our problem, the location prediction task assists App usage prediction with a helpful spatial con-

text. In addition, to tackle the dilemma raised by data scarcity and personalization, to the best of

our knowledge, we are the first to propose a user identification task at the output side to capture

user preference. This suggests that in parallel to designing new architectures for user modeling,

exploring multi-task learning for personalization is a promising avenue for research.

6 CONCLUSION

In this article, we propose a context-aware multi-task learning framework—DeepApp—to predict

personalized App usage, which can exploit spatio-temporal contexts and better capture user pref-

erence to achieve better performance. To tackle the dilemma raised by data scarcity and personal-

ization, we train one model for multiple users with a user identification task to capture user pref-

erence. Extensive experiments on a large-scale real-world dataset demonstrate its effectiveness.

In the future, we plan to exploit the location property (e.g., point of interest) and App attribute

(e.g., category) as semantic contexts to enhance the representation of different units and further

improve prediction accuracy.
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