Al-empowered mHealth:

Pioneering Applications and Overcoming Key Challenges

Tong Xia

https://xtxiatong.github.io | tx229@cam.ac.uk

Postdoc & PhD@University of CambridgeMaster@Tsinghua UniversityBachelor@Wuhan University

Content

Research background

Research overview

Audio-based mHealth

Future work

Content

Research background

Research overview

Audio-based mHealth

-uture work

Public health challenges

Cost-effective and scalable mHealth solutions

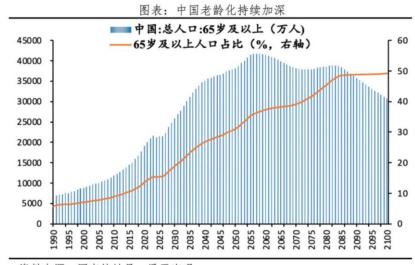
- Shortage of medical resources

- About 47% of the global population lacks access to adequate diagnostic services
- Pandemic and epidemic

[1] Kenneth A Fleming, et al. The lancet commission on diagnostics: transforming access to diagnostics. The Lancet, 398(10315): 1997–2050, 2021

- Aging population

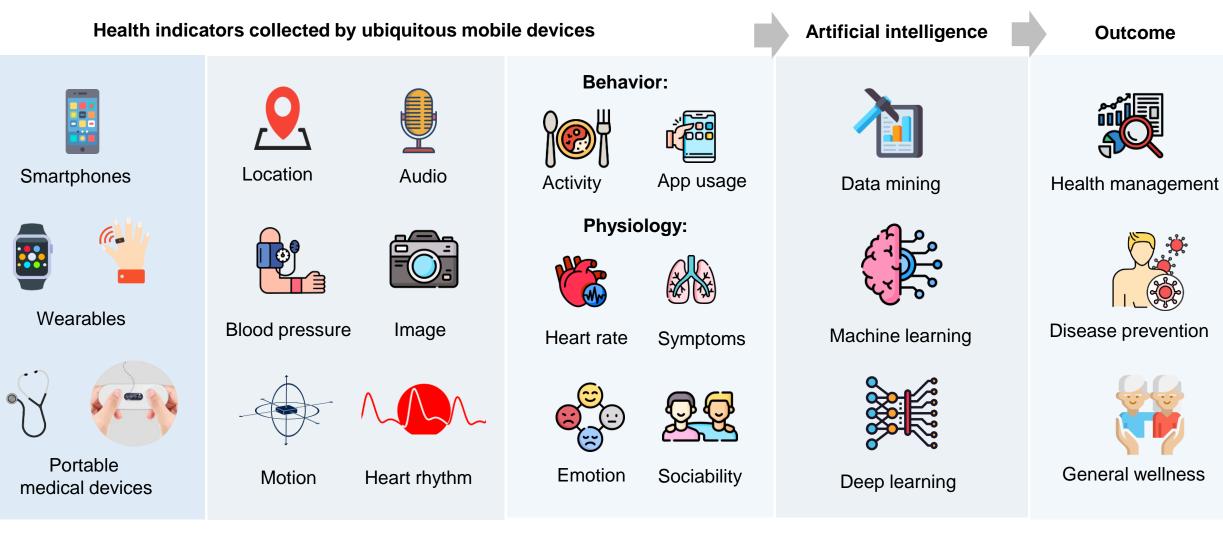
 It is estimated that by 2100, people over the age of 65 will make up half of China's population.



资料来源:国家统计局,泽平宏观

[2] <u>中国老龄化报告2024_腾讯新闻 (qq.com)</u>

Al-empowered mHealth



Content

Research background

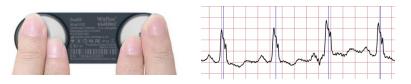
Research overview

Audio-based mHealth

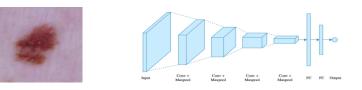
-uture work

Active sensing

Audio-driven respiratory health screening (KDD'20, NPJ DM'21)

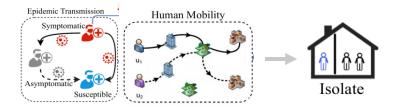


ECG(electrocardiogram)-based heart arrythmia detection (WHI'22, IEEE JBHI'24)



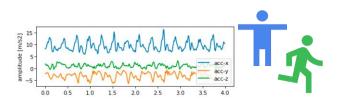
Dermoscopic image-based skin lesion prediction (KDD FL4Data'23, IEEE JBHI'24)

Passive sensing



Precise mobility intervention for epidemic control (BigData'21, KDD'22)

Predicting hospital visits from GPS records (UbiComp'21)



Accelerometer-based human activity recontinuation (KDD'24)

Active sensing

- 1. Difficult to collect large data
- 2. Limited health annotation
- Collecting 550h+ dataset COVID-19 Sounds
 Proposing acoustic foundation models OPERA (NeurIPS'21, arXiv' 24)

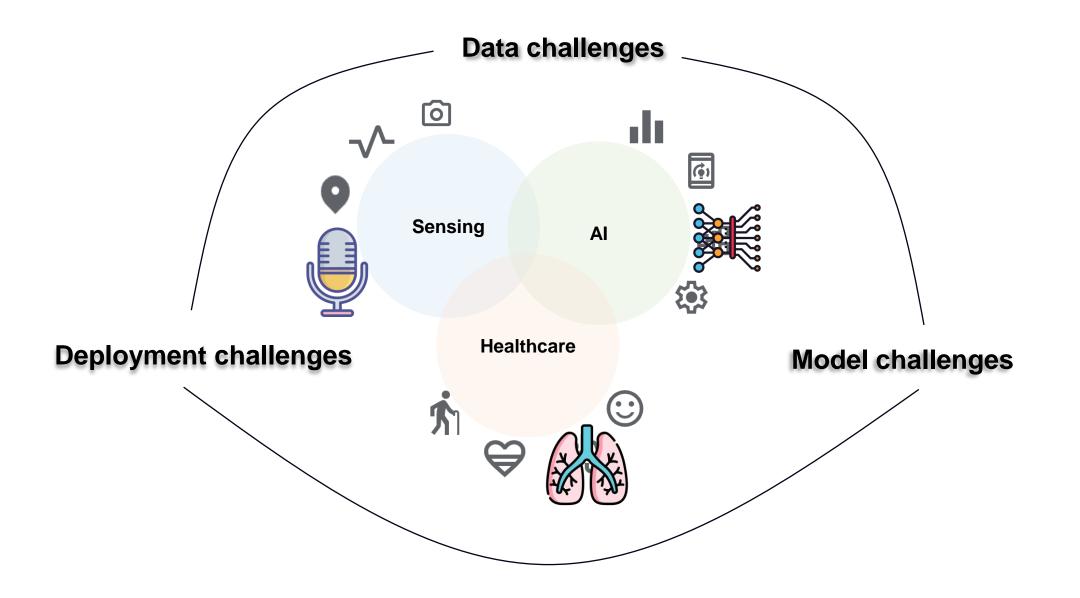
Passive sensing

3. Data complexity and missingness4. Implicit association with health

- Mobile sensing data generation method
- Dynamic graph neural network approach (AAAI'20, KDD'22, UbiComp'20)

Both active and passive sensing

- 5. Model robustness and efficiency6. Individual health data privacy
- Efficient uncertainty quantification for mHealth
- Decentralised model learning for mobile sensing data (INTERSPEECH'21, ICASSP'23, IEEE JBHI'24, KDD'24)



Content

Research background

Research overview

Audio-based mHealth

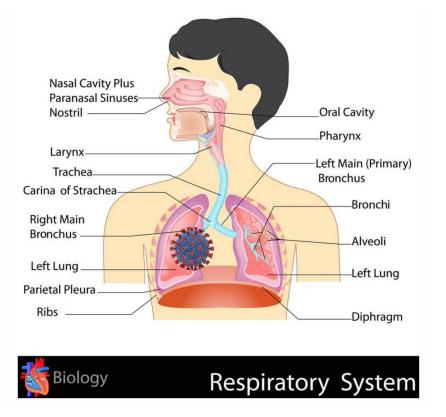
-uture work

The promise of audio-based mHealth:

✓ Scalable
 ✓ Non-invasive
 ✓ Sustainable
 ✓ Non-expensive

A non-invasive and ubiquitous **screening protocol**, which would allow individual prescreening 'anywhere', 'anytime', in real time, and available to 'anyone'.

- Lung is the main organ involved and infected by virus, which leads to some changes in respiratory sounds[3].
- ✓ Audio-based methods are promising in detecting cough-related disease like pertussis[4], croup[5], and tuberculosis[6].



[3] Hui Huang, et al. The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods[J]. medRxiv, 2020.

[4] R. X. A. Pramono, et al, "A cough-based algorithm for automatic diagnosis of pertussis," PloS one, vol. 11, no. 9, 2016

[5] R. V. Sharan, et al "Automatic croup diagnosis using cough sound recognition," IEEE Transactions on Biomedical Engineering, vol. 66, no. 2, pp. 485–495, 2018. 4

[6] G. Botha, et al, "Detection of tuberculosis by automatic cough sound analysis," Physiological measurement, vol. 39,no. 4, p. 045005, 2018

How to collect data for mHealth research?

- A large-scale crowdsource dataset COVID-19 Sounds

(T. Xia*, et al. NeurIPS'21 🏆)

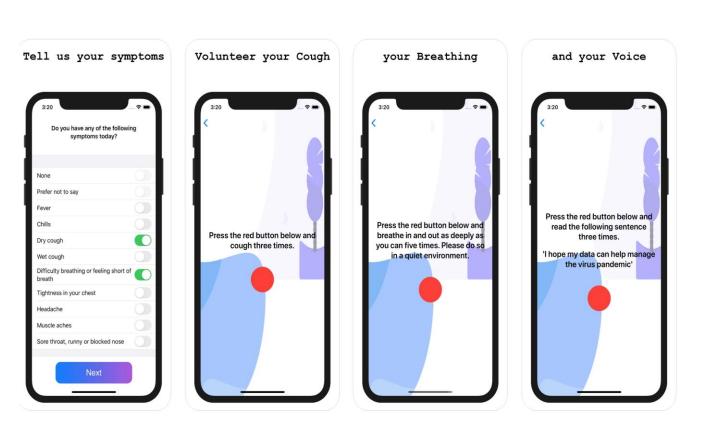
How to design and train Al models for mHealth applications?
- A CNN model for respiratory health screening
(T. Xia*, et al. Nature npj Digital Medicine' 22)

How to ensure **generalizability** of AI for mHealth?

- Pretrained acoustic foundation models for mHealth

(T. Xia*, et al. Under review (

Data collection through smartphones

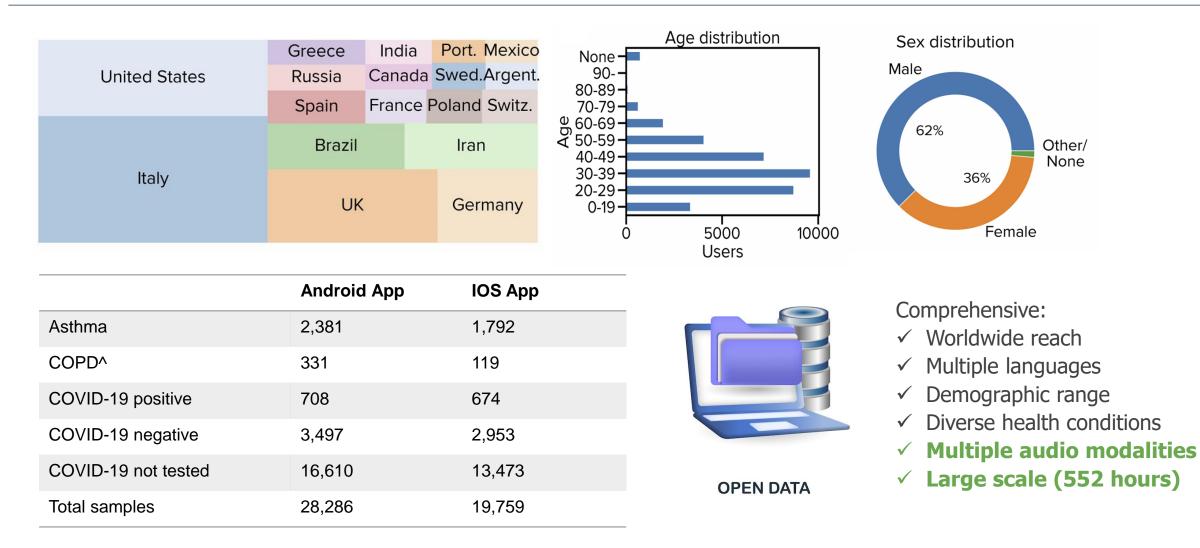


Demographics, Medical history, Smoking history, etc.

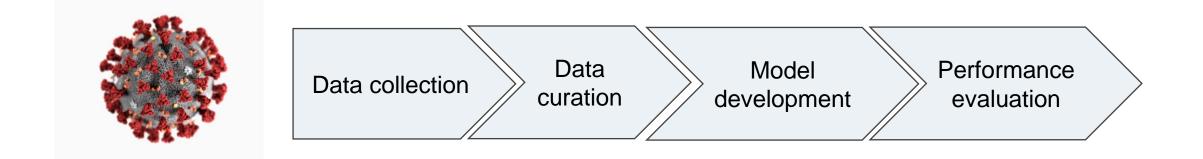
- ✓ Symptoms: fever, loss of taste, etc.
- ✓ COVID-19 test: positive, negative, never tested, etc.
- ✓ Audio: breathing, cough and some voice.

[7] T. Xia*, D. Spathis*, C. Mascolo, et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening. NeurIPS Datasets and Benchmarks Track 2021

Data collection through smartphones



[8] T. Xia*, D. Spathis*, C. Mascolo, et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening. NeurIPS Datasets and Benchmarks Track 2021 ^COPD: Chronic obstructive pulmonary disease

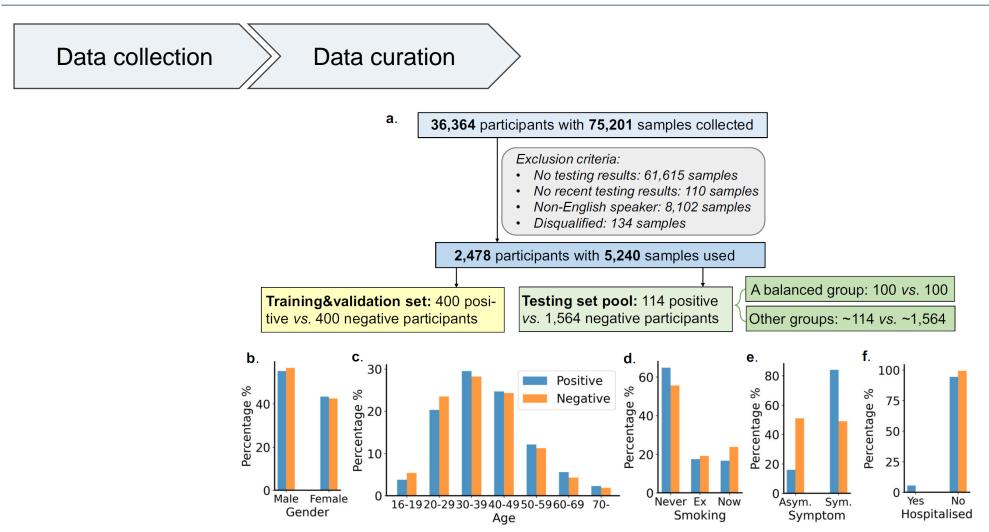


An application:

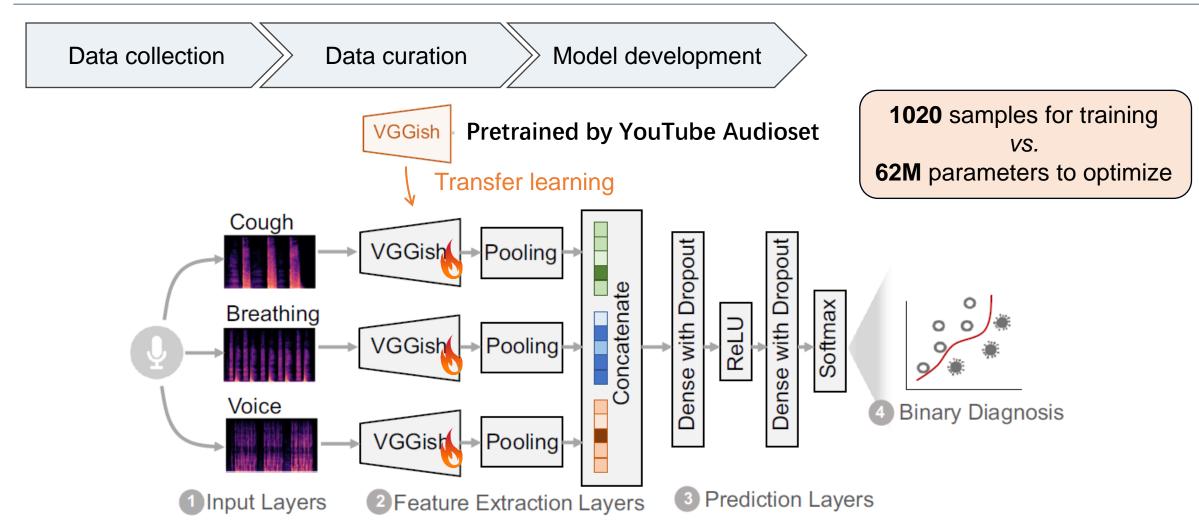
COVID-19 prediction

distinguish between **tested-negative** controls, including symptomatic cases which could be caused by another infection and **tested-positive** patients, including asymptomatic cases

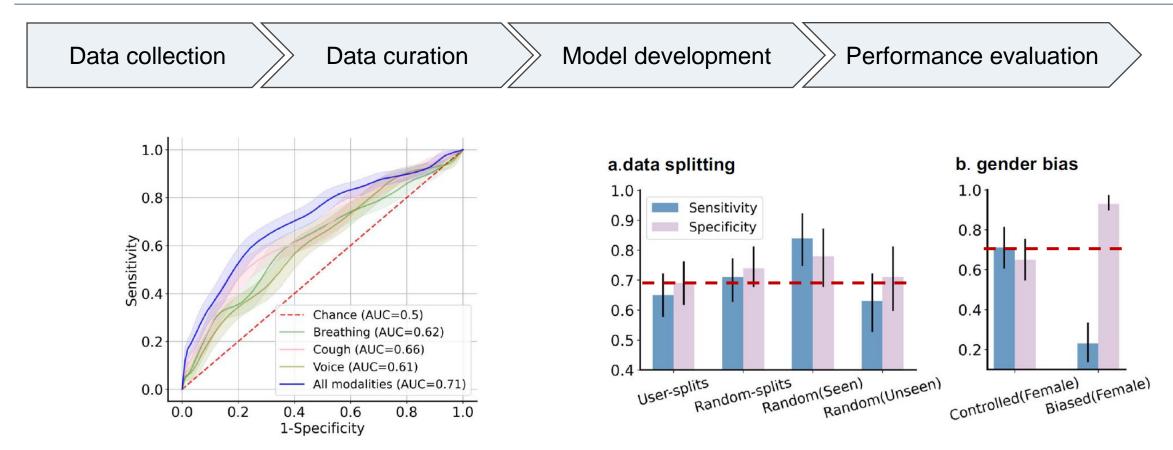
[8] J. Han*, T. Xia*, et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022



[9] J. Han*, T. Xia*, et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022



[9] J. Han*, T. Xia*, et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022

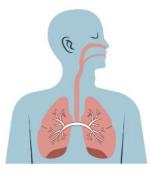


Audio: AUROC of 0.71, Sensitivity of 0.65, Specificity of 0.69 Fast flow test: Sensitivity ranges from 0.37 to 0.99

[9] J. Han*, T. Xia*, et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022

How to ensure generalizability for mHealth?

AI-empowered acoustic mHealth application



- ✓ Asthma diagnose✓ COPD prediction
- COPD prediction
 Copplete prediction
- ✓ Smoking history estimation

- ✓ Spirometry inference
- ✓ Vital capacity prediction
- \checkmark Respiratory rate estimation

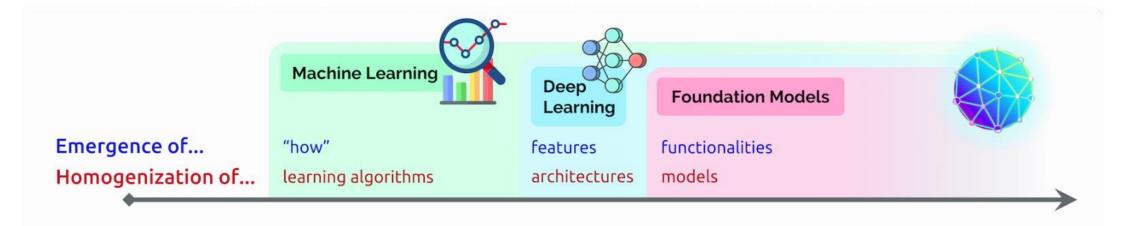
- ✓ Murmur prediction
- ✓ Heart abnormity detection

- Snoring recognition
- Body position prediction
- \checkmark Sleep apnea detection

Task specific model for each application?

[10] E. Zhang*, T. Xia*, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148

How to ensure generalizability for mHealth?



Task-specific → Task-agnostic

Beginner's Guide: Using Foundation Models in ML Projects (labellerr.com)

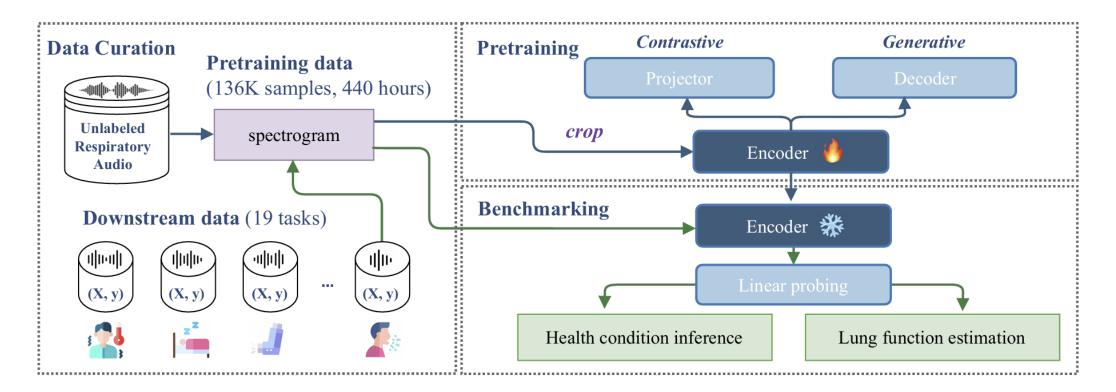


Figure 1: System overview of OPERA. After data curation, respiratory acoustic foundation models (Encoder) are pretrained and then evaluated on various downstream health tasks.

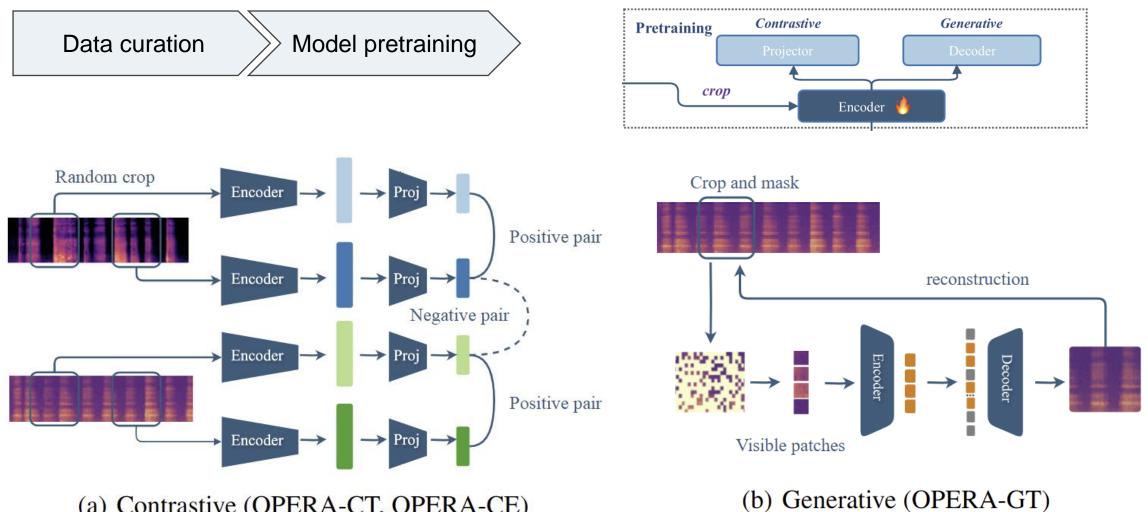
[10] E. Zhang*, T. Xia*, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148

Data curation

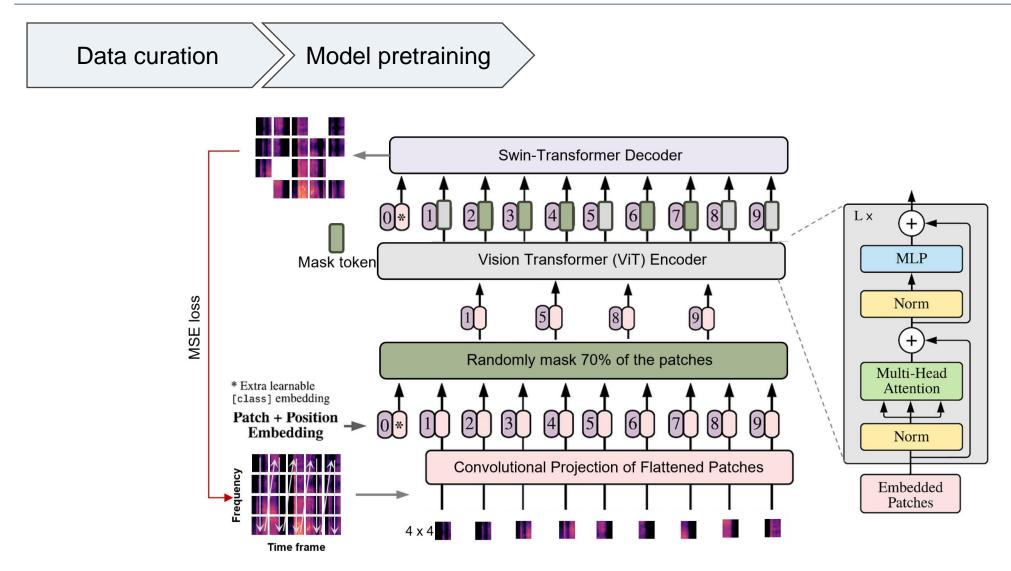
 We curate a unique large-scale (~136K samples, 440 hours), multi-source (5 datasets), multimodal (breathing, coughing, and lung sounds) respiratory audio dataset for foundation model pretraining

Data name	Collected by	SR	Modality	#Sample	Duration (s)	Crop (s)
COVID-19 Sounds [69]	Microphone	16~44.1kHz	Induced cough (3 times)	40866	6.1[2.6~11.2]	2
			Deep breath (5 times)	36605	20.5[9.7~31.6]	8
UK COVID-19 [12]	Microphone	48kHz	Induced cough (3 times)	19533	4.1[2.1~9.2]	2
	-		Exhalation (5 times)	20719	7.7[4.2~15.6]	4
COUGHVID [47]	Microphone	48kHz	Induced cough (up to 10s)	7179	6.9[2.4~9.9]	2
ICBHI [51]	Stethoscope	4~44.1kHz	lung sound (several breath cycles)	538	22.2[20.0~65.9]	8
HF LUNG [31]	Stethoscope	4kHz	lung sound (several breath cycles)	10554	15.0[15.0~15.0]	8

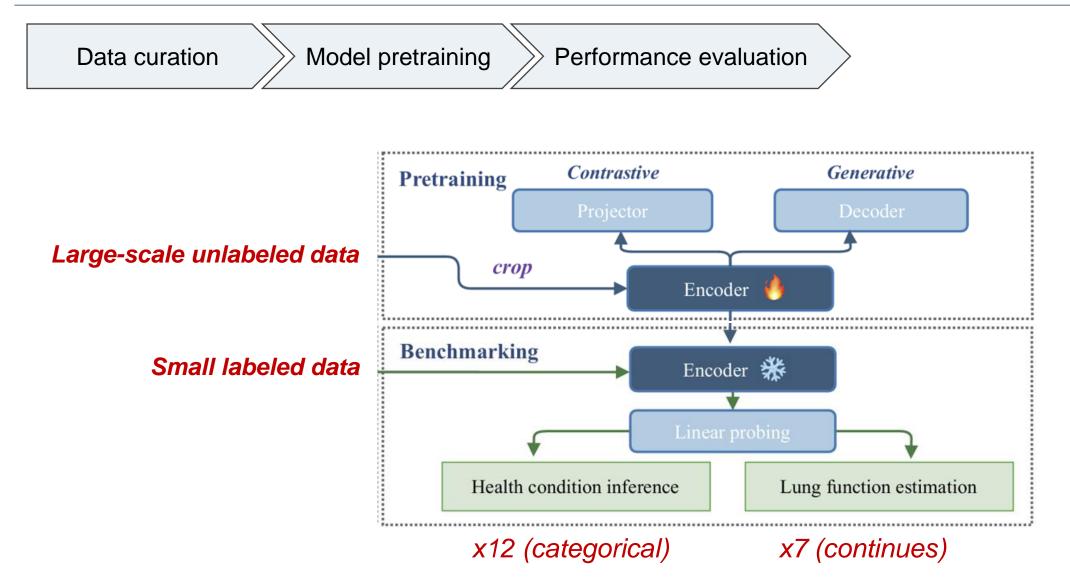




(a) Contrastive (OPERA-CT, OPERA-CE)



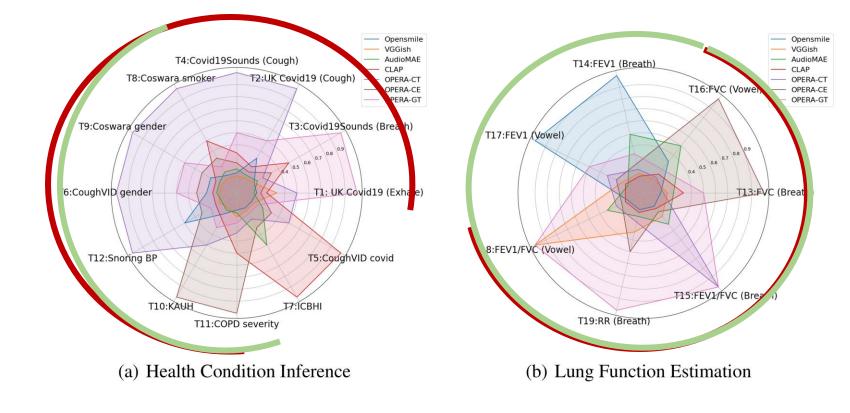
Mask Auto Encoder (MAE) pre-training



Data curation

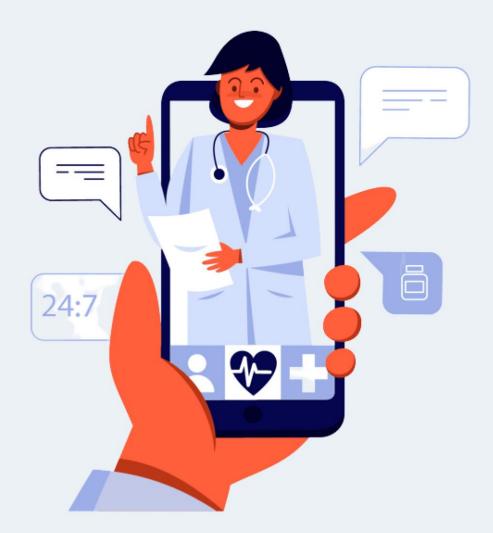
Model pretraining

 \gg Performance evaluation



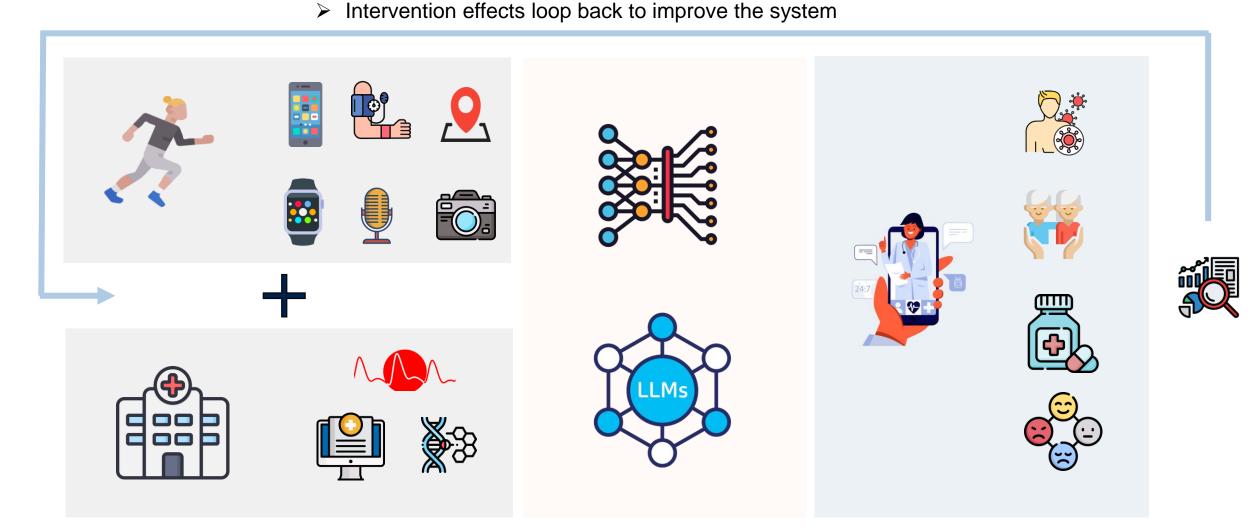
- Outperform baselines on 15 (10+5) out of 19 tasks
- ✓ Generalizable to unseen data and new respiratory audio modalities

We make everything open for research: <u>https://github.com/evelyn0414/OPERA.git</u>



mHealth Applications

What is the future?



- Multi-modal mobile data and clinical data reunited
- Collaboration with doctors to define clinical meaningful tasks
- Powerful foundation models and LLM agents
- Efficient and decentralized model fine-tuning
- Delivery explainable and reliable healthcare on personal mobile devices

Acknowledgement

Reference

PhD thesis:

• **T. Xia.** Reliable and decentralised deep learning for physiological data. PhD Thesis 2024.

Publications (^equal contribution):

- C. Brown[^], J. Chauhan[^], A. Grammenos[^], J. Han[^], A. Hasthanasombat[^], D. Spathis[^], T. Xia[^], P. Cicuta, and C. Mascolo. Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data. KDD 2020 (Google scholar citation 487, Cambridge Frame Hall 'Better Future' award)
- J. Han[^], T. Xia[^], et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022 (Google scholar citation 78)
- T. Xia[^], D. Spathis[^], C. Mascolo, et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening. NeurIPS Datasets and Benchmarks Track 2021 2020 (the 2nd poster award at the Precision Health Initiative Launch Symposium Cambridge, Google scholar citation 73)
- T. Xia, J. Han, L. Qendro, T. Dang, and C. Mascolo. Uncertainty-aware COVID-19 Detection from Imbalanced Sound Data. INTERSPEECH 2021 (Student Travel Grant award, Google scholar citation 30)
- T. Xia, et al. Attnmove: History Enhanced Trajectory Recovery via Attentional Network. AAAI 2021. (Google scholar citation 43)
- T. Xia, J. Han, A. Ghosh, and C. Mascolo. Cross-device Federated Learning for Mobile Health Diagnostics: A First Study on COVID-19 Detection. ICASSP 2023
- **T. Xia**, A. Ghosh, X. Qiu, and C. Mascolo. FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation. **KDD** 2024
- **T. Xia**, J. Han, C. Mascolo. Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift. Workshop on Health Intelligence, AAAI 2022
- T. Xia[^] and A. Ghosh[^]. Mobility-based Individual POI Recommendation to Control the COVID-19 Spread. IEEE Big Data 2021.
- T. Feng, T. Xia, et al. Precise Mobility Intervention for Epidemic Control Using Unobservable Information via Deep Reinforcement Learning. KDD 2022
- E. Bondareva, **T. Xia**, J. Han, C. Mascolo. Towards Uncertainty-Aware Murmur Detection in Heart Sounds via Tandem Learning. CinC 2022

Reference

- T. Xia, T. Dang, J. Han, L. Qendro, and C. Mascolo. Class-balanced Evidential Deep Learning for Health Diagnostics. IEEE JBHI 2024
- T. Xia, J. Han, L. Qendro, and C. Mascolo. Exploring Machine Learning for Audio-based Respiratory Condition Screening: A Concise Review of Databases, Methods, and Open Issues. JEBM 2022

Under review:

- J. Han, **T. Xia**, C. Mascolo. Audio-based Sleep Apnea Detection from Tracheal and Ambient Sound Recordings. Under review.
- E. Zhang^, T. Xia^, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148

Other publications (^equal contribution):

- T. Li, T. Xia, H. Wang, Z. Tu, S. Tarkoma, Z. Han, and P. Hui. Smartphone App Usage Analysis: Datasets, Methods, and Applications. IEEE Communications Surveys & Tutorials, 2022 (Google scholar citation 78)
- J. Han, C. Brown[^], J. Chauhan[^] A. Grammenos[^], A. Hasthanasombat[^], D. Spathis[^], T. Xia[^], P. Cicuta, C. Mascolo. Exploring automatic COVID-19 diagnosis via voice and symptoms from crowdsourced data. ICASSP 2021 (Google scholar citation 190)
- T. Xia, Y. Yue, Y. Li, et al. Understanding Urban Dynamics via State-sharing Hidden Markov Model. IEEE TKDE 2021
- **T. Xia**, J. Lin, Y. Li, J. Feng, P. Hui, F. Sun, D. Guo, and D. Jin. 3DGCN: 3-dimensional Dynamic Graph Convolutional Network for Citywide Crowd Flow Prediction. ACM **TKDD**, 2021 (Google scholar citation 33)
- **T. Xia**, Y. Li, J. Feng, D. Jin, Q. Zhang, H. Luo, and Q. Liao. DeepApp: Predicting Personalized Smartphone App Usage via Context-aware Multi-task Learning . ACM TIST, 2020 (Google scholar citation 23)
- Y. Yu^, T. Xia^, H. Wang, J. Feng, Y. Li. Semantic-aware Spatio-temporal App Usage Representation via Graph Convolutional Network. UbiComp 2020 (Google scholar citation 27)
- T. Xia, Y. Li, J. Feng, D. Jin, Q. Zhang, H. Luo, and Q. Liao. Revealing Urban Dynamics by Learning Online and Offline Behaviours Together. UbiComp 2019
- Z. Han, T. Xia, Y. Xi, and Y. Li . Healthy Cities, A Comprehensive Dataset for Environmental Determinants of Health in England Cities. Scientific Data. 2023

THANK YOU

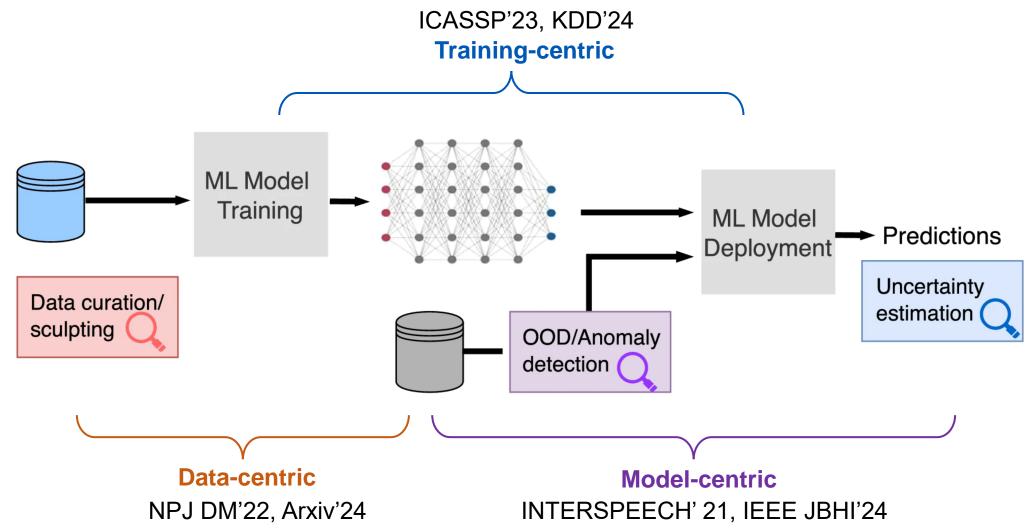
Linkedin

Google scholar

Tong Xia tx229@cam.ac.uk

Backup

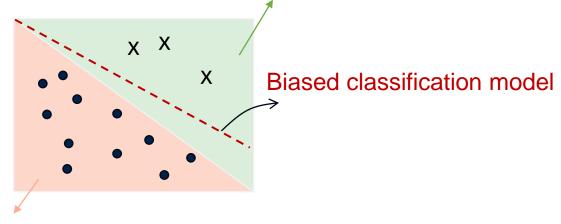
Trustworthy AI for mHealth



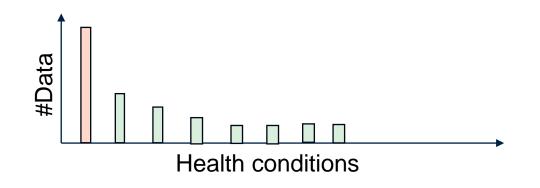
How to enable reliable mHealth in the wild?

□ Challenges: Class imbalanced and model overconfidence

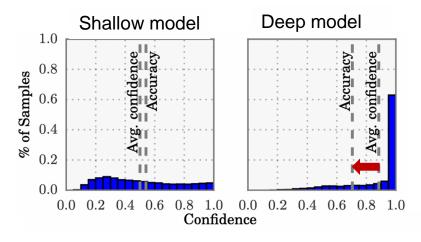
Real distribution for unhealthy samples (minority class)



Real distribution for healthy samples (majority distribution)



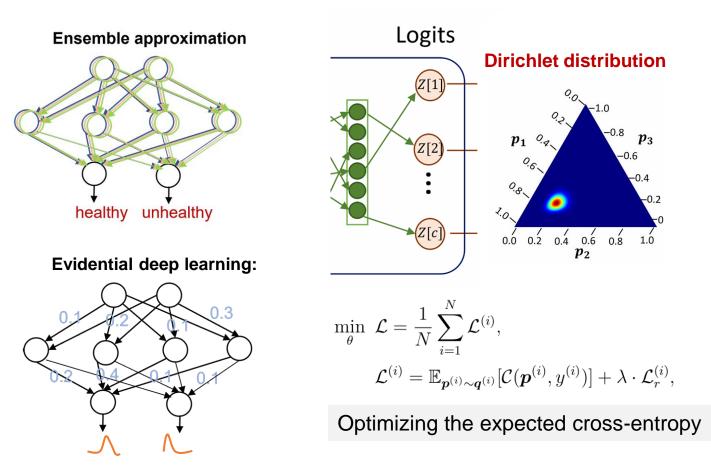
Deep learning overconfidence



Sensitivity to distributional shift

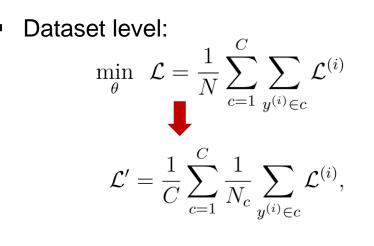
Class-balanced evidential deep learning for uncertainty

Challenge: on-device efficiency



Instance level:

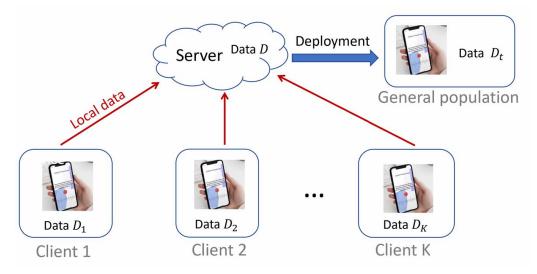
$$\mathcal{L}_{r}^{(i)} = KL[(Dir(\boldsymbol{\alpha}^{(i)})||Dir(\mathbf{1})]]$$
$$\boldsymbol{\downarrow}$$
$$\mathcal{L}_{r}^{\prime(i)} = KL[Dir(\boldsymbol{\alpha}^{\prime(i)})||Dir(\boldsymbol{\beta})]$$



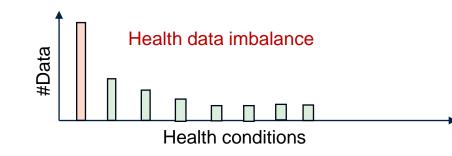
[6] T. Xia, T. Dang, J. Han, L. Qendro, and C. Mascolo. Class-balanced Evidential Deep Learning for Health Diagnostics. IEEE JBHI 2024

How to protect data privacy for mHealth?

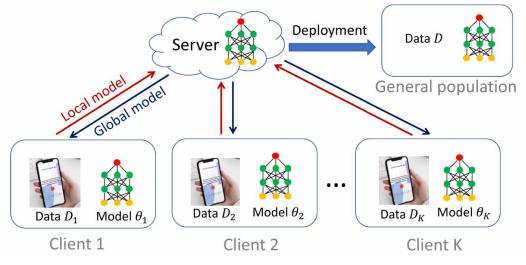
□ Challenge: Data privacy



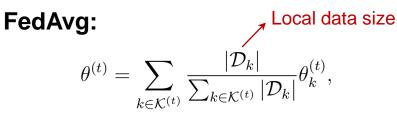
(a) Model training using centralised data.



Federated learning (FL):



(b) Model training using distributed data.



Feature augmentation based local training

□ Methodology - FLea

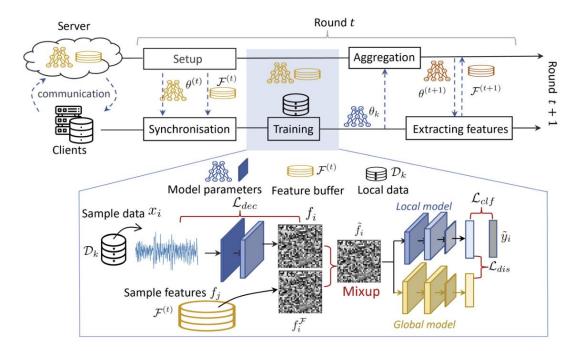


Figure 5: Overview of FLea for t-th communication round.

To address label skew:

$$\mathcal{B}^{\mathcal{F}} = \{ (f_i^{\mathcal{F}}, y_i^{\mathcal{F}}) \in \mathcal{F}^{(t)} \}$$

To address local overfitting:

$$\begin{cases} \tilde{f}_i = \beta_i f_i + (1 - \beta_i) f_i^{\mathcal{F}}, \\ \tilde{y}_i = \beta_i y_i + (1 - \beta_i) y_i^{\mathcal{F}}, \end{cases}$$

To protect the privacy of the shared features:

$$\begin{split} \mathcal{L}_{dec}(\mathcal{B}) &= \frac{v^2(x,f)}{\sqrt{v^2(x,f)v^2(f,f)}}, \\ \mathcal{L} &= \mathcal{L}_{clf}(\mathcal{B}, \mathcal{B}^{\mathcal{F}}) + \lambda_1 \mathcal{L}_{dis}(\mathcal{B}, \mathcal{B}^{\mathcal{F}}) + \lambda_2 \mathcal{L}_{dec}(\mathcal{B}), \end{split}$$

[14] T. Xia, A. Ghosh, X. Qiu, and C. Mascolo. FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacypreserving Feature Augmentation. KDD 2024 Table 4: AUROC on health condition inference tasks (higher is better). The best model for each task is highlighted. We report mean and standard deviation from five independent runs. \checkmark and * indicates superiority over the opensmile feature set and the other pretrained baselines respectively.

ID	Task Abbr.	Opensmile	VGGish	AudioMAE	CLAP	OPERA-CT	OPERA-CE	OPERA-GT	
T1	Covid (Exhale)	0.550 ± 0.015	0.580 ± 0.001	0.549 ± 0.001	0.565 ± 0.001	0.586 ± 0.008	0.551 ± 0.010	0.605 ± 0.001	√ *
T2	Covid (Cough)	0.649 ± 0.006	0.557 ± 0.005	0.616 ± 0.001	0.648 ± 0.003	0.701 ± 0.002	0.629 ± 0.006	0.677 ± 0.001	√ *
T3	Symptom (Breath)	0.571 ± 0.006	0.571 ± 0.003	0.583 ± 0.003	0.611 ± 0.006	0.603 ± 0.005	0.610 ± 0.004	0.613 ± 0.002	√*
T4	Symptom (Cough)	0.633 ± 0.012	0.605 ± 0.004	0.659 ± 0.001	0.669 ± 0.002	0.680 ± 0.006	0.665 ± 0.001	0.673 ± 0.001	××
T5	Covid (Cough)	0.537 ± 0.011	0.538 ± 0.028	0.554 ± 0.004	0.599 ± 0.007	0.578 ± 0.001	0.566 ± 0.008	0.552 ± 0.003	1
T6	Gender (Cough)	0.677 ± 0.005	0.600 ± 0.001	0.628 ± 0.001	0.665 ± 0.001	0.795 ± 0.001	0.721 ± 0.001	0.735 ± 0.000	1*
T7	COPD (Lung)	0.579 ± 0.043	0.605 ± 0.077	0.886 ± 0.017	0.933 ± 0.005	0.855 ± 0.012	0.872 ± 0.011	0.741 ± 0.011	1
T 8	Smoker (Cough)	0.534 ± 0.060	0.507 ± 0.027	0.549 ± 0.022	0.680 ± 0.009	0.685 ± 0.012	0.674 ± 0.013	0.650 ± 0.005	××
Т9	Gender (Cough)	0.753 ± 0.008	0.606 ± 0.003	0.724 ± 0.001	0.742 ± 0.001	0.874 ± 0.000	0.801 ± 0.002	0.825 ± 0.001	√ *
T10	Obstructive (Lung)	0.636 ± 0.082	0.605 ± 0.036	0.616 ± 0.041	0.697 ± 0.004	0.722 ± 0.016	0.741 ± 0.014	0.703 ± 0.016	*
T11	COPD severity (Lung)	0.494 ± 0.054	0.590 ± 0.034	0.510 ± 0.021	0.636 ± 0.045	0.625 ± 0.038	0.683 ± 0.007	0.606 ± 0.015	*
T12	Position (Snoring)	0.772 ± 0.005	0.657 ± 0.002	0.649 ± 0.001	0.702 ± 0.001	0.781 ± 0.000	0.769 ± 0.000	0.742 ± 0.001	√*

Table 5: MAE on lung function estimation tasks (lower is better). Best model per task is highlighted. We report mean and standard deviation across subjects.

ID	Task Abbr.	Opensmile	VGGish	AudioMAE	CLAP	OPERA-CT	OPERA-CE	OPERA-GT	
T13	FVC (Breath)	0.985 ± 0.743	0.904 ± 0.568	0.900 ± 0.551	0.896 ± 0.542	0.924 ± 0.583	0.848 ± 0.607	0.892 ± 0.618	√*
T14	FEV1 (Breath)	0.756 ± 0.721	0.839 ± 0.563	0.821 ± 0.590	0.840 ± 0.547	0.837 ± 0.563	0.834 ± 0.581	0.825 ± 0.560	
T15	FEV1/FVC (Breath)	0.141 ± 0.185	0.131 ± 0.146	0.129 ± 0.146	0.134 ± 0.146	0.128 ± 0.140	0.132 ± 0.141	0.128 ± 0.141	√ *
T16	FVC (Vowel)	0.850 ± 0.592	0.895 ± 0.559	0.833 ± 0.588	0.883 ± 0.560	0.885 ± 0.553	0.761 ± 0.544	0.878 ± 0.550	×*
T17	FEV1 (Vowel)	0.730 ± 0.497	0.842 ± 0.559	0.876 ± 0.561	0.859 ± 0.541	0.780 ± 0.542	0.830 ± 0.561	0.774 ± 0.554	*
T18	FEV1/FVC (Vowel)	0.138 ± 0.166	0.130 ± 0.145	0.131 ± 0.141	0.137 ± 0.147	0.132 ± 0.140	0.136 ± 0.150	0.130 ± 0.138	√ *
T19	Breathing Rate	2.714 ± 0.902	2.605 ± 0.759	2.641 ± 0.813	2.650 ± 0.947	2.636 ± 0.858	2.525 ± 0.782	2.416 ± 0.885	√*

- ✓ Outperform baselines on 16 out of 19 tasks
- ✓ Generalizable to unseen data and new respiratory audio modalities

We make everything open for research: <u>https://github.com/evelyn0414/OPERA.git</u>

[12] E. Zhang^, T. Xia^, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148