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Al-empowered mHealth:

Pioneering Applications and Overcoming Key Challenges






- Shortage of medical resources globally

=  About 47% of the global population lacks

. H[E E i . . .
B YEERAERNR access to adequate dlagnostlc Services
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99.9% of people in China own a smartphone

with internet access. The smartwatch market is
rising rapidly [2]
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[1] R EZ# Lk 52024 FEiR#HE (99.com) . : : .
2] CNNIC: 28635 B BE 28 & R R SR | BB R4 AL - 1901 | o - Proliferation of mobile health devices
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Health indicators collected by ubiquitous mobile devices Artificial intelligence

Outcome
Behavior:
e £03 ' i
[ 1 ]| ﬁﬁ [E% O
Smartphones Location Audio Activity App usage Data mining Health management
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Wearables
ECE} [P it Heart rate  Symptoms Machine learning

© | - & - e
WY AT AW\ AL
U @ B %? /8 959 29 i

Portable : : s

: General wellness

Ediea] devises Motion Heart rhythm Emotion  Sociability Deep learning

Al-empowered mHealth:
Pioneering Applications and Overcoming Key Challenges
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ECG(electrocardiogram)-based
heart arrythmia detection
(WHI'22, IEEE JBHI’'24)

oo

I

Predicting hospital visits from
individual mobility
(AAAI'20, UbiComp’21)

i) H-

Audio-driven respiratory health screening
(KDD'20,NPJ DM’21,NeurlPS’21, KDD’22)

Applications
x
Ly

'1st '2nd 3rd Atrial |
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| Normal ]
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Predicting murmur from heart sound
(CinC’22)

________ fc Transmission __* Human Mobility
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Precise mobility intervention for
epidemic control
(BigData’21, KDD'22)

A
/
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Conv + Coav + Comv + Conv
Input Maxpool Maxpool Muxpool Maxpoal FCFC Ouput

Dermoscopic image-based skin
lesion prediction
(KDD FL4Data’23,IEEE JBHI'24) s



o Wy
AL LAY [ [ M
™ T ]

ECG(electrocardiogram)-based

heart arrythmia detection
(WHI'22, IEEE J-BHI’'24)

:."' Symptomatics x‘\: ’
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i Asymplomatic” (@)

Susceptible . '\ u ’,: ISOlate

Precise mobility intervention for
epidemic control
(BigData’21, KDD'22)

Audio-driven respiratory health screening
(KDD'20,NPJ DM’21,NeurlPS’21, KDD’22)




Cardiovascular mHealth

» ECG (electrocardiogram)-based heart arrythmia detection

: "““wr;giqg’ram (ECG) ! I L1

ECG tracing of a normal heart rhythm.

Ay

In atrial fibrillation. the tracing shows tiny. irregular "fibrillation”
waves between heartbeats. The rhythm is irregular and erratic.

-

"

v" ACC > 0.78 for 5-class arrythmia (1> ARFF) classification

v" Sensitivity > 0.88 for AF (f580) detection

~

[3] T. Xia. Reliable and decentralised deep learning for physiological data. PhD Thesis 2024.
[4] T. Xia, J. Han, C. Mascolo. Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift. Workshop on Health
Intelligence, AAAI 2022
[5] T. Xia, T. Dang, J. Han, L. Qendro, and C. Mascolo. Class-balanced Evidential Deep Learning for Health Diagnostics. IEEE JBHI 2024

Residual CNN block
MaxPooling 1D

Dense + Softmax

!

Arrythmia types

10



1]
- (O
../r
4V
=
D
a
\\

\\

oINg |
—— ~
\

> [
™ -
S .
“a .

v' Affordable

v Anytime and anywhere




mHealth in containing COVID-19

\‘;/ ﬂf \) World Health Search by Country, Territory, or Area i <3 il Human MOblllty
NS Organlzatlon - ,
WHO Coronavirus (COVID-19) Dashboard Overview Data Table
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Mobility-based mHealth in contammg COVID-19

S ©1 11 = €11 O
=T
ore { =2
Human Moblllty Epldcmlc TI'ElIlSII]lSSlOIl ........................................................................................................................... _ R

§ T [ . Pl
b Y Symptomatlcc \ o b
' e 1 , : A
! ¥ ¢ &y AN | 1E
: L | - : ' Individual Features s o’

) ! 1 : : naividual reaturcs sq !
' N ' : i
: ? : .@ ’h 5 >
: o ) ! g T3
' : ' N - ° : <
' : Asymptomatlc ) : § b

' 1 K : H
} AN Susceptible - A Relationships A '3/ =
------------------------ Ly | e
i | Individual-Individual RelatlonshlpAd > 4

Area-Area Commute Ay, N Z _____

Quarantine % Exposure %

ﬁr ﬁr ‘m No intervention 100 100
Lockdown 100 <5%
[solate Expert policy 20% <20%
Ours <5% <1%

[6] T. Xia” and A. Ghosh”\. Mobility-based Individual POl Recommendation to Control the COVID-19 Spread. IEEE Big Data 2021.

[7]T. Feng, T. Xia, et al. Precise Mobility Intervention for Epidemic Control Using Unobservable Information via Deep Reinforcement Learning. KDD 2022
13



Audio-based mHealth in containing COVID-19

Tell us your symptoms Volunteer your Cough your Breathing and your Voice

Do you have any of the following
symptoms today?

Press the red button below and
read the following sentence
three times.

Press the red button below and
Press the red button below and breathe in and out as deeply as
cough three times. you can five times. Please do so

FRIR T E A BUXEET
‘I hope my data can help manage
the virus pandemic’

inagquiet environment.

Can our voices recorded by smartphones be used for
respiratory infections detection?

Breathing Cough Voice
| Mel-spectrogram ‘ | Mel-spectrogram ‘ ‘ Mel-spectrogram |
1 o

[ veeish | [ wveeish | [ vcGish | covid-19-sounds.org

¥ 4 + 1 ]
[ Pooing | [ Pooling | [ Pooling | 30K+ participants

\ | /28—(1

| T | >>> Audio: AUROC of 0.71, Sensitivity of 0.65, Specificity of 0.69

| Fully connected Iiayers with Dropout | Flow test: Sensitivity ranges from 0.37 to 0.99

‘ Softmax ‘

<

ey

[8] J. Han/, T. Xia/, et al. Sounds of COVID-19: Exploring Realistic Performance of Audio-based Digital Testing. Nature NPJ Digital Medicine 2022
[9] T. Xia”\, D. Spathis”r, C. Mascolo, et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening. NeurlPS Dataseti@nd
Benchmarks Track 2021
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Audio-based health screening

Respiratory audio-driven mHealth application

=) : Z
@ ‘"™ z<
YT
g 3p
s - L
. ! ‘7;"‘: V]
‘; Asthma diagnose v Spirometry inference v’ Crackle prediction v' Snoring recognition
y COPD prediction v Vital capacity prediction v Wheeze prediction v Body position prediction
Sthl.Oklf;_g history v’ Respiratory rate estimation v |nfection localization v" Sleep apnea detection
estimation

[10] T. Xia, J. Han, L. Qendro, and C. Mascolo. Exploring Machine Learning for Audio-based Respiratory Condition Screening: A Concise Review of
Databases, Methods, and Open Issues. JEBM 2022

[11] J. Han, T. Xia, C. Mascolo. Audio-based Sleep Apnea Detection from Tracheal and Ambient Sound Recordings. Under review.
[12] E. Zhang”, T. Xia”, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148
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https://arxiv.org/abs/2406.16148

mHealth Applications
Are we ready yet?

=




Biases and fairness
Explainability and uncertainty
On-device efficiency

Data privacy

Generalizability

18



How to enable reliable mHealth in the wild?

d Challenges: Class imbalanced and model overconfidence

Real distribution for unhealthy samples (minority class)

\\\\ X X /

® ‘. ‘\\ X Biased classification model
o (] \\\\ /
Y [ ) \\,
® °
® °

Real distribution for healthy samples (majority distribution)

A

#Data

HHHDHDD

Health conditions

v

Deep learning overconfidence

Shallow model Deep model
1.0
T 1l
Q = ) (]
0.8 gl -
) = D
Ellg -y
0.6 oS <1 gl
8||<ﬂ <ﬂ| S
0.4 s [
0.2 A 1<
' 1l =
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0.0 02 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
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Sensitivity to distributional shift
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Solution 1: Data-balanced ensemble learning for uncertainty

O Methodology

. —
Training ﬁ —
______________ &
-
unhealthy ﬁ -
healthy

Models

= Model fusion:

L 0

= Model uncertainty estimation:

[12] T. Xia, J. Han, L. Qendro, T. Dang, and C. Mascolo. Uncertainty-aware COVID-19 Detection from Imbalanced Sound Data. INTERSPEECH 2021

20



Solution 1: Data-balanced ensemble learning for uncertainty

1 Results on audio-based COVID-19 detection

& 704 0.8501
L7° 9.7%
07 L= - 0.825
_/\ o
Hl Imbalalanced < 0.800
0.5 Q
Up-sampling 2 0.7751
0.3 B Down-sampling
0.7501
Our emsemble
0.1 ] 0.25 0.50 0.75 1.00
ROC-AUC Sensitivity Fraction of retained data
Less biased model Detection with referral
2021-01-02
e T e LT 2021-01-05 2021-01-07  2021-01-08
Tested positive Dry cough No symptom  No symptom
1 1 1 1 1 1 1 ~
Cough sample Cough sample Cough sample Cough sample

B -1 S S i | S

Prediction: positive Prediction: positive Prediction: positive Prediction: negative
u=10820 =022 u=0.86,0=022 u = 0.54,0 = 0.38 u=0450=0.43

A case study of uncertainty estimates



Solution 2: Class-balanced evidential deep learning for uncertainty

0 Challenge: on-device efficiency = [nstance level:
Ensemble approximation Logits ; ' ) '
v Dirchiet distrbution £ = KL[(Dir(a®)||Dir(1)]

o, ( ))}l)\>

{/ /\¥

Y9

healthy unhealthy

1

L = KL[Dir(e')||Dir(8)]

= Dataset level:

IIllIl L=— ZZE
‘ cly()@;

LY = EpiqoCPY,y )] + A LY, (@),
o = Z 2L

Optimizing the expected cross-entropy Cyee

Evidential deep learning:

[6] T. Xia, T. Dang, J. Han, L. Qendro, and C. Mascolo. Class-balanced Evidential Deep Learning for Health Diagnostics. IEEE JBHI 2024
22



Solution 2: Class-balanced evidential deep learning for uncertainty

0 Experiments on three mHealth applications

O Conclusions:

In-distribution Near OOD Far OOD
= Competitive accuracy vs. ensemble method
ﬁ - - .
¥ M ‘ = Reduce overconfident predictions by up to 43%
C
- .
Rstiifol i TaSHREarseunY sthar siird » Improve OOD detection by up to 16.1%
(crackle) (EAEEkIE) (clapping) = Require almost no additional memory and
/\,\ﬁ W computation for uncertainty estimations
S
[%2]
; \f_/——/\/
ECG ECG Fetal ECG

(normal) (fetal abnormal)

Task 3
\d

skin image skin image other image
(melanoma) (melanoma) (dog)

[6] T. Xia, T. Dang, J. Han, L. Qendro, and C. Mascolo. Class-balanced Evidential Deep Learning for Health Diagnostics. IEEE JBHI 2024
23



How to ensure trustworthy Al for mHealth?

O Challenge: Data privacy
Federated learning (FL):

Deployment

Server PataD

DataD; Model 6, Data D, Model 6, Data Dy Model 6k
Client 1 Client 2 Client K Client 1 Client 2 Client K
(a) Model training using centralised data. (b) Model training using distributed data.
A FedAvg: / Local data size
Health data imbalance
0 _ 2 ()
00 = 0\,

#Data

v

HHHHHDD

Health conditions

24



Solution 1: Weighted federated aggregation
» Global distribution . Client1 (4 Client2 ) . ClientN
=1 I y=1 1 y=1 [] Tt y=1 |
=0 [ 1 =0 [_] =0 [ 1] y=0
#Data ” #Data g L #Data ” ) #Data ”

Larger aggregation weight

FedLoss (Proposed):

wit . wﬁ? = Softmaa:(l(i...,lj(\?),

Q(t) _ Z w(t) Q(t) Predictive loss of the global model on the local data size

[13] T. Xia, J. Han, A. Ghosh, and C. Mascolo. Cross-device Federated Learning for Mobile Health Diagnostics: A First Study on COVID-19

Detection. ICASSP 2023
25



Solution 1: Weighted federated aggregation

0 Experimental setup

= Data set: COVID-19 physiological audio
= (Clients: 2,368 participants (majority always tested COVID-19 negative)
= Training: 30 clients update local models and contrite to the global model per round. Totally 2000 rounds

O Results
ROC-AUC Sensitivity  Specificity Youden’s index
Centralised 0.79 0.46 0.93 0.40
(0.74-0.84) (0.36-0.56) (0.91-0.94) (0.29-0.50)
0.80 (011 ) 1.00 0.11
FedAvg
(0.75-0.85) | (0.06-0.17) | (1.00-1.00) (0.06-0.16)
FedProx 0.75 0.19 0.99 0.18
(0.69-0.80) | (0.12-0.27) | (0.99-1.00) (0.12-0.26)
FedLoss 0.79 0.50 0.90 0.40
(Proposed)  (0.73-0.83) (0.88-0.92) (0.28-0.50)

(0.40-0.59)

0.8
0.7 1
0 0.6-
< 0.5
0.4
0.3

More efficient

»

A

/

- FedAvg
FedProx
m——  FedLoss

0

250 500 750 1000 1250 1500 1750 2000
Comminication Round

[13] T. Xia, J. Han, A. Ghosh, and C. Mascolo. Cross-device Federated Learning for Mobile Health Diagnostics: A First Study on COVID-19
Detection. ICASSP 2023

26



Solution 2: Feature augmentation based local training

Cross-device FL for mHealth:

* Multiple classes

——
[—]

Simple weighted aggregation doesn't work

/ // .
Client 1 4~ » Client 2 ¥ Client 3 A Client n

[——]

I

Small local data size

06 0o6 0d6
[ ]

—
—_—
]
—
——

2 << Local model overfitting

Figure 1: Edge devices as clients in federated learning, where * Label skewi/class imbalance
local data exhibits label skew (presented by different mark-

Local model drift = Global model suboptimal
ers) and scarcity (usually very small in size).

27



Solution 2: Feature augmentation based local training

J Methodology - FLea = To address label skew:

Server Round t - o ( )
e B = Tyl e FUN
Setup , Aggregation — {(fl ’yz ) }
,7 Y 128 9t ! ]:(’) ‘ | :
V commun|cat|on‘ :Il : +1) | , ]:u +1)

-’ ‘ = E 9“

T + 7 punoy

» To address local overfitting:

Ao A 4 :
| AR
4| Synchronlsatlon | Training Extracting features

Cllents O‘g‘ S = = ﬁ — ﬁlﬁ + (1 - ﬁl)f;gj’

% Dk e

e — Ry Ny T
Model paramet::s Feature buffer LocaldaLt:m/mOde/ Lay W yl = )Blyl + (1 - ﬁl)yi ,
A r_j_\ |

l

Sample data i

Dy, @W{|\l“~#\‘\'ﬁ”ﬁ‘\#ﬂ‘! “

Sample fle)atures fj/’ : 2 (x f)
E::\ﬁ flf Global model Ldec (B) = ’
V2 (e, V(S )

L=Lyp(887)+21Lais(B,B7) + 12 Laec(B),

= To protect the privacy of the shared features:

L

Figure 5: Overview of FLea for ¢t-th communication round.

[14] T. Xia, A. Ghosh, X. Qiu, and C. Mascolo. FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-
preserving Feature Augmentation. KDD 2024 ”



Solution 2: Feature augmentation based local training

0 Experiments

Table 1: Overall accuracy comparison. Accuracy is reported as mean + std across five runs. The best performance under each
setting is highlighted in red and the SOTA baseline (*excluding FedData) is in grey. | indicates a relative improvement of our
method compared to the SOTA over 5% and | indicates a relative improvement over 10%.

CIFAR10 UrbanSound8K UCI-HAR
Accuracy % Qua(3) Dir(0.5) Dir(0.1) Qua(3) Dir(0.5) Dir(0.1) Qua(2) Dir(0.3) Dir(0.1)
FedAvg 30.25+1.33 32.58+1.09 20.46+2.15 43.69+0.56 46.77+0.87 34.59+2.64 66.99+0.87 65.78+0.34  48.43+0.70
FedProx 31.92+1.45 32.01+£1.25 20.86+1.97 38.45+0.48 39.58+1.02 34.81+0.46 68.32+£0.50 67.75£0.41 58.35+0.52
FedDecorr 31.12+1.57 33.57+1.22 21.34+1.59 45.01+0.57 46.77+0.65 35.87+1.03 69.12+0.63  66.68+0.43  57.05+0.38
- FedLC 32.05+1.60 30.17+1.18 18.82+2.01 50.98+0.49 50.11+0.83 37.05+0.87 71.69+0.52 70.57+0.38 62.57+0.42
= FedNTD 39.98+0.97 39.82+0.86 26.78+2.34 49.80+0.45 51.09+0.97 36.53+£0.99 68.33+0.72  70.32+0.49 60.13+0.51
1l
- FedBR 31.66+1.07 33.08+1.12 20.98+2.54 44.05+0.63 47.58+0.90 36.15+1.17 67.54+0.68  69.15+0.40 59.87+0.46
'Q CCVR 35.95+1.63 35.02+1.43 24.21+2.67 47.12+0.72 49.26+0.92 39.62+1.20 70.17+0.49  68.87+0.51  60.28+0.36
FedGen 32.32+1.21 34.27+1.56 22.56+2.89 45.20+0.89 48.33+1.12 38.27+1.44 70.58+0.61 69.32+£0.60 60.07+0.63
FedMix 44.04+1.53 45.50+1.88 38.13+2.06 51.56+0.59 54.18+0.62 43.35+0.72 68.59+0.54  69.34+0.49  65.63+0.47
FedData* 54.64+1.02 56.47+1.22 55.35+1.46 62.83+1.25 64.45+0.76 61.11+0.98 78.13+0.46  78.24+0.51  75.93+0.34
FLea | 47.03£1.017 48.86+143] 44.40+1.2317 || 57.73x0.5177  59.22+0.78]  45.94+0.77] || 75.17£0.42 73.0240.49 71.68+0.517
FedAvg 27.72+1.26 26.92+£1.31 21.88+1.87 39.35+0.60 43.98+0.89 31.21£1.62 65.77+0.42  67.10+0.40  46.95+0.62
FedProx 22.88+2.54 24.47+£2.17 21.01+2.46 39.05+0.56 42.21+0.76 32.85+1.22 69.18+0.41  68.28+0.45 59.97+0.46
FedDecorr 26.45+1.58 25.57+1.84 22.03+1.98 39.67+0.58 44.23+0.95 33.67+1.34 65.77+£0.39  68.57£0.51 55.54+0.49
FedLC 28.64+1.52 26.36+£1.47 20.24+1.68 44.33+0.79 45.15+0.80 39.87+£1.04 70.63+0.49  71.34+0.45 63.67+0.52
A FedNTD 32.92+1.43 34.64+1.52 30.13+1.67 42.21+0.63 48.63+0.78 40.15+1.22 65.64+0.38  67.16+0.43  59.93+0.46
1l
ITz FedBR 30.25+1.45 30.32+1.32 28.52+1.56 41.15+0.70 44.37+0.82 34.89+1.36 66.98+0.43  68.23+0.49 57.25+0.52
g CCVR 34.01+1.89 35.12+1.34 33.26+1.56 44.05+0.87 46.68+0.83 36.80+£1.37 65.24+0.50  70.15+0.46  60.26+0.57
FedGen 33.12+1.61 31.89+1.59 29.90+1.76 40.89+0.72 44.54+0.81 35.78+1.40 68.27+0.64  69.82+0.41  59.13+0.45
FedMix 38.14+1.12 39.87+£1.55 36.87+1.38 46.55+0.81 50.00+0.92 42.27+1.15 68.06+0.44 70.80+£0.45 61.39+0.46
FedData™ 53.59+1.32 53.02+1.18 53.56+1.64 60.31+0.82 60.48+0.91 59.67£1.55 76.42+0.38  76.45+0.47  75.46%0.47
FLea | 41.98+1.2677 42.01x1.13]  37.69+1.65 | 54.35+0.8077 55.68+0.8717 45.05+1.32] || 74.25£0.44] 73.98£0.46 66.57 + 0.45

Activation

Reconstruction attack

[14] T. Xia, A. Ghosh, X. Qiu, and C. Mascolo. FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-
preserving Feature Augmentation. KDD 2024
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How to ensure generalizability for mHealth?

Al-empowered acoustic mHealth application

: Z
Q 8. T Z
S Wi
D AR LR
\\gf,}%{g | ‘
& =
| 1 aePre °
:; Asthma diagnose v' Spirometry inference v" Murmur prediction v" Snoring recognition
COPD prediction v Vital capacity prediction v Heart abnormity v' Body position prediction
v SFTQ_Ok”E_g history v' Respiratory rate estimation detection v" Sleep apnea detection
estimation

Task specific model v.s. One-for-all ?

[12] E. Zhang”, T. Xia”\, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148

30
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Solution: Large-scale unlabeled data pretraining

= We curate a unique large-scale (~136K samples, 440 hours), multi-source (5 datasets), multi-
modal (breathing, coughing, and lung sounds) respiratory audio dataset for foundation model pretraining

Data name Collected by SR Modality #Sample Duration (s) Crop (s)
COVID-19 Sounds [6¢] Microphone 16~44.1kHz Induced cough (3 times) 40866 6.1[2.6~11.2] 2
Deep breath (5 times) 36605 20.5]9.7~31.6] 8
UK COVID-19 [ 1Z] Microphone  48kHz Induced cough (3 times) 19533 4.1[2.1~9.2] 2
Exhalation (5 times) 20719 7.714.2~15.6] 4
COUGHVID |47] Microphone  48kHz Induced cough (up to 10s) 7179 6.9(2.4~9.9] 2
ICBHI |51] Stethoscope 4~44 1kHz lung sound (several breath cycles) 538 22.2120.0~65.9] 8
HF LUNG [31] Stethoscope 4kHz lung sound (several breath cycles) 10554 15.0[15.0~15.0] 8

Random crop

(

Crop and mask

~ ‘t reconstruction

Negative pair |

r
s’

o

- —_} —_) __} - .
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Visible patches
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Solution: Large-scale unlabeled data pretraining

Table 4: AUROC on health condition inference tasks (higher is better). The best model for each task
is highlighted. We report mean and standard deviation from five independent runs. v and * indicates

superiority over the opensmile feature set and the other pretrained baselines respectively.

ID  Task Abbr. | Opensmile | VGGish AudioMAE CLAP | OPERA-CT OPERA-CE OPERA-GT |

T1  Covid (Exhale) 0.550+0.015 | 0.580+0.001 0.549+0.001 0.565+0.001 | 0.586+0.008 0.551 £0.010 0.605+0.001 | v*
T2  Covid (Cough) 0.649 £ 0.006 | 0.557+0.005 0.616+0.001 0.648 +0.003 | 0.701 £0.002 0.629 £0.006 0.677+0.001 | v/ *
T3  Symptom (Breath) 0.571+£0.006 | 0.571 £0.003 0.583+0.003 0.611+0.006 | 0.603 +£0.005 0.610+0.004 0.613+0.002 | v*
T4  Symptom (Cough) 0.633 +0.012 | 0.605+0.004 0.659+0.001 0.669 +0.002 | 0.680+£0.006 0.665+0.001 0.673+0.001 | v/*
T5  Covid (Cough) 0.537+0.011 | 0.538+0.028 0.554+0.004 0.599 £0.007 | 0.578 £0.001 0.566 +0.008 0.552+0.003 | v
Ta Gender (Congh) 067740005 1 0600+0001 0A28+0001 0665S+0001 | 0795+0001 0721+0001 0735+0000 | /*
T7  COPD (Lung) 0.579 £0.043 | 0.605+0.077 0.886+0.017 0.933+£0.005 | 0.855+0.012 0.872+0.011 0.741+0.011 | v
T8  Smoker (Cough) 0.534+0.060 | 0.507 £0.027 0.549+0.022 0.680+0.009 | 0.685+0.012 0.674+0.013 0.650+0.005 | v*
T9  Gender (Cough) 0.753 £0.008 | 0.606 £0.003 0.724 +£0.001 0.742+0.001 | 0.874 £0.000 0.801 £0.002 0.825+0.001 | v *
T10 Obstructive (Lung) 0.636 +£0.082 | 0.605+0.036 0.616+0.041 0.697 £0.004 | 0.722+0.016 0.741 £0.014 0.703+0.016 | v *
T11 COPD severity (Lung) | 0.494 +0.054 | 0.590 £0.034 0.510+0.021 0.636 +0.045 | 0.625+0.038 0.683 £0.007 0.606 +0.015 | v *
T12 Position (Snoring) 0.772+£0.005 | 0.657+£0.002 0.649+£0.001 0.702+0.001 | 0.781 £0.000 0.769 £0.000 0.742+0.001 | v/ *

Table 5: MAE on lung function estimation tasks (lower is better). Best model per task is highlighted
We report mean and standard deviation across subjects.

ID  Task Abbr. | Opensmile | VGGish AudioMAE CLAP | OPERA-CT OPERA-CE OPERA-GT

T13 FVC (Breath) 0.985+0.743 | 0.904+0.568 0.900+0.551 0.896+0.542 | 0.924 +0.583 0.848+0.607 0.892+0.618 *
T14 FEVI1 (Breath) 0.756 £0.721 | 0.839+0.563 0.821 £0.590 0.840 +0.547 | 0.837 +0.563 0.834+0.581 0.825 +0.560

T15 FEVI/FVC (Breath) | 0.141 £0.185 | 0.131+0.146 0.129+0.146 0.134+0.146 | 0.128 £0.140 0.132+0.141 0.128+0.141 /*
T16 FVC (Vowel) 0.850 +£0.592 | 0.895+0.559 0.833+0.588 0.883 +£0.560 | 0.885+0.553 0.761 £0.544 0.878 +£0.550 v*
T17 FEVI (Vowel) 0.730£0.497 | 0.842+0.559 0.876+0.561 0.859+0.541 | 0.780 +0.542 0.830+0.561 0.774 £0.554 =
T18 FEVI/FVC (Vowel) | 0.138 +0.166 | 0.130+0.145 0.131 £0.141 0.137+0.147 | 0.132+0.140 0.136 +0.150 0.130+0.138 /*
T19 Breathing Rate 2.714+£0.902 | 2.605+0.759 2.641+0.813 2.650+0.947 | 2.636+0.858 2.525+0.782 2.416+0.885 v*

v' Outperform baselines on 16
out of 19 tasks

v' Generalizable to unseen data
and new respiratory audio
modalities

“'2 2'\

-
AA
OPERA

We make everything open for research:
https://github.com/evelyn0414/OPERA.qit

[12] E. Zhang”, T. Xia”, et al. Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking. https://arxiv.org/abs/2406.16148
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What is the future?
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Electrocardiogram (ECG) -based heart arrythmia detection

ECGs
Sinoatrial node _ B
\BAnode) 3 " _ Bundle of His PR l __________ \ XS
1 1
Atrioventricular node -~ Purkinje fibers | ConV1D |
(AV node) ¢ (PF) I 1
I I
| BN+RelLU |
\ 1

\ l /
____________________

— , - Residual CNN block

WML‘ MaxPooling 1D

ECG tracing of a normal heart rhythm. Dense + Softmax

B11RS 1E A5 AT N SR AP 8 s e oo

In atrial fibrillation. the tracing shows tiny. irregular "fibrillation”
waves between heartbeats. The rhythm is irregular and erratic.

[3] T. Xia. Reliable and decentralised deep learning for physiological data. PhD Thesis 2024.

4 )

v' ACC > 0.78 for 5-class
arrythmia classification

v" Sensitivity > 0.88 for
AF detection

U

- J

-

v The promise of detecting
heart anomality using
mobile/wearable devices

~

4

[4] T. Xia, J. Han, C. Mascolo. Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift. Workshop on Health

Intelligence, AAAI 2022
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Mobility-based health condition inference

Physical mobility features:

o m@.____ , * Radius of gyration
it o « Standard deviation of displacements

* Distribution entropy of places visited

@ 2" day’s records
\V4

---Recovered trajectory

Contextual mobility features:

Using sparse GPS records to * Visit willingness to restaurant, entertainment, spo@seenic
recover daily mobility patterns spot, fast food, and tobacco/liquor sho

- A health survey conducted in 13 major hospitals covering 2 months in Beijing
- 1056 outpatients paid at least one visit to the hospital
- 1056 healthy hospital staff
v" Binary prediction AORUC of 0.8

[5] T. Xia, et al. Attnmove: History Enhanced Trajectory Recovery via Attentional Network. AAAI 2021.
[6] Y. Zhang, F. Xu, T. Xia, and Y. Li. Quantifying the Causal Effect of Individual Mobility on Health Status in Urban Space. UbiComp 2021. -
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‘P CAMBRIDGE questions

2.3 Evaluation

_ _ o Actual Values
» Diagnosis (classification) performance: Positive Negative
= Sensitivity (recall) = 7 S True False
TP+EP 2. =y Positive Positive
e =) 5 (TP) (FP)
Specificity = pe— )
§ g False True
TN+TP i . .
= Accuracy (Acc) = = S Negative Negative
TN+FN+FN+FP g ;Dr. (FN) (TN)
= ROC-AUC
Il Outputs
= Confidence-related performance: — B
» ECE (Expected Calibration Error)
= Brier score (accuracy of predicted probabilities) PLIT—
» ROC-AUC for distributional shift detection 0.0 0.2 0.4 0.6 0.8 1.0

Confidence
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4. Conclusions and
future directions

2. Technical background 3. Research methods
and experiments

1. Motivation and research

M UNIVERSITY OF

 CAMBRIDGE questions

2.1 Class imbalance and long-tailed learning

Related work - long-tailed learning:

©
©
®
» Data-level method
I I I anns R |
Conditions » Up-sampling
T . » Down-sampling
Real distribution for unhealthy samples (minority class)
. » Augmentations
\\\\ X X
(] \\\ X .  p- .
°° o Biased classification model > Algorithm-level methods
[ ° .o /
° . ° SN, » Cost-sensitive loss
([
° > Scaling thresholds

» Weighted loss

Real distribution for healthy samples (majority distribution)
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2.2 Uncertainty quantification

(a) Aleatoric uncertainty. (b) Epistemic uncertainty.

Figure 2.5: An illustration of uncertainty. In deep learning, two types of uncertainties are
commonly recognised. The first type, called aleatoric uncertainty arises from noise, perturba-
tions, and biases present in the data. When the data is noisy or unrepresentative, it can introduce
variability in both the input and output. For instance, in (a), after fitting the model 0, data
samples located in the overlapping region exhibit high aleatoric certainty. The second type of
uncertainty is known as epistemic uncertainty, which stems from a lack of sufficient knowledge
about the optimal model. (b) illustrates high epistemic uncertainty, as multiple models can fit
the training data equally well. This kind of uncertainty can be reduced by adjusting the model

or supplementing it with additional data.
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2.2 Model overconfidence and uncertainty quantification

Standard neural network Related work — Uncertainty quantification:
Bayesian neural network Dropout approximation Ensemble approximation
L F A D
e \ \ /,,—>\;).‘-\; /
healthy unhealthy (?
healthy unhealthy healthy unhealthy healthy unhealthy
DL overconfident |
LeNet (1998) ResNet (2016) Evidential deep learning:

i CIFAR-100 CIFAR-100

' 1 1l 072
» 0.8 Eug S5 i
) O, =~ "~ D
= g”g 3I gl 64.8
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4. Conclusions and
future directions

3.2 Uncertainty-aware deep learning for multi-class physiological data

0 Summary

Q Contributions: 1a @0 Q
/q AN ;i,/
O Introduced a novel and efficient class-balanced <; U:‘-;,_._,D D\

. . . ‘*\. a': ,/‘ﬂ’ = S uncertain

EDL for multi-class physiological data *$< @ -:>1;:.;:- ‘e — " o

) ) . L e, =

O Extensive experiments demonstrate its 'g' \9‘ e “-%,;7

superiority o %

Input Neural network Diagnosis with uncertainty

O Provide a systematic understanding for a

reliable automated System for health dlagnostlcs An uncertainty-aware deep learning driven health diagnostics system.

 Publications:

1) Xia, T., et al. Hybrid-EDL: Improving evidential deep learning for uncertainty quantification on imbalanced
data. In Workshop on Trustworthy and Socially Responsible Deep Learning, NeurlPS 2022 (Primary study)

2) Xia, T., et al. Uncertainty-aware health diagnostics via class-balanced evidential deep learning. IEEE Journal
of Biomedical and Health Informatics J-BHI 2024 (Full study)
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3. Research methods

and experiments

2.3 Data privacy and federated learning

Gathering health data for ML research can
face privacy problem given the sensitivity of
personal information

Server Data D Deployment

General population

Client 1 Client 2 Client K

(a) Model training using centralised data.

Related work — Federated learning:

Deployment
Server Dt
SOF General population
c’b\((\ (“o
\0 o
6\0
DataD; Model 6, Data D, Model 6, Data D, Model 6
Client 1 Client 2 Client K

(b) Model training using distributed data.

FedAvg:

gt — | Dy| 6,’(:)
) ZkEIC(t) |Dk|
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