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W Head movements A biosignal is a signal in human beings that
can be continually measured like respiratory

ye sound (breathing and cough), heart activity
Behaviour (ECG), brain waves (EEG), etc.
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Figure from: Giannakakis, Giorgos, et al. "Review on psychological stress detection using biosignals." IEEE Transactions on Affective Computing (2019).



Machine Learning for Biosignal Modelling
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Udantha R et al. Cough sound analysis can rapidly diagnose childhood pneumonia.
Annals of biomedical engineering, 41(11):2448-2462, 2013



Is deep learning still promising in the real application?

A

e, X

@t-of-distrib.ljticy

Input ——>

Black —0 utput

Box

—

Q_ack of interpretability j

Whi2

\Over-confident)

Y
Risk-management



Uncertainty Estimation
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Fig. 1: A schematic view of main differences between
aleatoric and epistemic uncertainties.

Abdar, Moloud, et al. "A review of uncertainty quantification in deep learning: Techniques, applications and
challenges." Information Fusion (2021).



COVID-19 detection from sounds: Is that safe?
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A single deterministic CNN model using cough, breathing and voice for COVID-19 prediction

https://www.covid-19-sounds.orag/en/



https://www.covid-19-sounds.org/en/

Uncertainty-aware COVID-19 detection from sounds
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Xia, Tong, et al. "Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data." 7

arXiv preprint arxiv:2104.02005 (2021).



Uncertainty-aware COVID-19 detection from sounds

ROC-AUC  Sensitivity — Specificity

Ensemble model

SVM  0.66(0.04)  0.63(0.05) 0.62(0.04)
CNN  0.74(0.03)  0.68(0.05)  0.69(0.06)
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Can the uncertainty perform well in the real application?

Distributional shift between training and testing:
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(¢) Heart task: shift on ECG recordings.



Can the uncertainty perform well in the wild?
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(a) Gaussian shift. (b) Missing shift. (¢) Sampling rate mismatch.
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Accuracy as well the quality of uncertainty decline as the shifts become server,
although ensemble methods relatively yield more reliable uncertainty estimations.
Beyond Accuracy: Evaluating Uncertainty under Dataset Shift for Biosignal Classification. Tong Xia, Jing Hang,
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Cecilia Mascolo. In submission.



Summary and future work

 Benchmarks for time series based health tasks.
Q Biosignals, such as ECG, PPG, sounds, and wearable data like accelerometers, are widely
adapted for health monitoring.
O In uncertainty literature, they are rarely explored. Can methods validated on images(MNIST,
ImageNet, CIFAR10) still perform well on health data that can be more
noisy/heterogeneous?

O Interpretation and utilization of the uncertainty.
O Uncertainty can stem from the model or data. Disentangling them can enable self-
supervised model adaption or active learning/continue learning.
O Adapting the model to the test domain can improve the robustness.

O Uncertainty-aware sensor/modality fusion.
O For multi-channel EEGs, artefact can happen in some channels from time to
time. Uncertainty can be used to discard some windows.
O Similarly, for wearables, for energy consumption concerns, accecemorater data is used for
activity reorganization. Yet, when the uncertainty is high, other signals can be promptly
iInvolved.
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