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Motivation

 Related work for reopening:
« Uniform venue restrictions [2,6]
« Super-spreader restrictions [3,4]

« Group mobility [5,10]

We will

REOPEN
on HI/HE

| shutterstock.com + 1727471215

Can we incorporate the insight from the
structures of mobility to achieve better
trade off among user preference, business
development, and pandemic control?




Problem Formulation

= Query R(v,, t): Auser u will query a preferred venue v, to be visited at
time t, and this venue belongs to function category f.

* Recommend v,: Avenue v, under the same function f, within the
distance threshold from v,, and with the minimum infection risk for the

whole population.




System Framework

Central server

» Pipeline:
= Maintain (v, t) - the number of unique

visitors of venue v 48 hours before t.

= Recall POIsv € Vr and [v —v,| <.

= Return v, with the minimum «.

4 )
v Preserving mobility demands.

v Do not track personally identifiable statics.
Fig. 4. An illustration of the system. N J




Experiments

N\
‘ Real-world check-Iin dataset

\

‘ Agent-based COVID-19 spread model
|
‘ Extensive comparison in three cities

/



Real-world check-in dataset

1 Characteristics of the Gowalla check-in dataset

TABLE 1
BASIC DATASET STATISTICS

City #User #Venue  #user/venue  #check-in/user

London 871 33,585 7.5 481.3

Berlin 400 12,012 7.2 274.2

Chicago 279 11,268 5.6 525.2
TABLE 11

POI CATEGORIES

First Category

Second Category

Community
Entertainment
Food
Nightlife
Outdoors
Shopping
Travel

Others

Government, Library,Worship, etc.

Aquarium, Stadium, Art, Theatre, Museum,etc.
African, American, Asian,Bakery,BBQ,Dessert, etc.
Bar, Dancefloor, Microbrewery, Pub, Saloon, etc.
Architecture, Beach, Canal, Cemetery, etc.

Airport, Bridge, Hotel, Subway, Train Station, etc.
life severance, bicycle repair store, etc.

Antiques, Apparel, Bank, Bookstore, Technology, etc.

51.71 -
i 52.6
w5167 o
© ©
251.54 7 2
= N . = 52.5 .
—151.41 £% . - o Y
51 3 .'.."_ .- - __::'.-r. A 7
-0.5 0.0 0.5 13.2 13.4 13.6
Longitude Longitude
(a) London. (b) Berlin.
42.01 5
0 41.91 B
© bl
.‘:;‘) o ity
2418
© R
41.7{ 5% s
-87.8 -87.7 -87.6 -87.5
Longitude

(c) Chicago.

Fig. 2. Geographic distribution of venues for three cities.
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Real-world check-in dataset

1 Data augmentation

1) Estimating density distributions:
1) the check-in temporal interval distrib
2) the hourly popularity of venue from t
3) the distribution of the check-in times
2) Sampling from density distributions:

Through generating, we enlarge the dat
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Fig. 3. Characteristics of the datasets with synthetic users for three cities.



Agent-based COVID-19 spread model

J SEIR-based model

Susceptible-Exposed-Infectious-Removed

Infection spreads through venues

Recovered

N(13,1)

A

days

In-care

N (5,1) days

A

Infectious

IncubationT N(6,1) days

Infected Infection 14

-

-

A

3

Susceptible

Asymptomatic (35%)
N(18,1) days

sts for 48 hours

Fig. 1. The model for infection spread.
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Extensive comparison in three cities

» Impact of hyper-parameters:
» The radius of recommendation
» The granularity of POI categories

» The fraction of people following the recommendation

> Baselines:

» Uniformly and randomly remove x% of the check-ins.

» Metrics:
» Daily new infections and the peak value.

» Total infections during the simulation period.
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Results and findings -- London
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Fig. 5. Simulation results with different parameters for Lordon. The above plo
of infections from the start day. The peak infection can be reduced at best to
65% following the original check-in footprints, respectively.

Total infection reduced by 10-20%,
and peak value reduced by 5%-13%
when the radium varied from 1KM to
3KM.
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Results and findings -- London
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Fig. 5. Simulation results with different parameters for Lordon. The above plo
of infections from the start day. The peak infection can be reduced at best to
65% following the original check-in footprints, respectively.

Total infection reduced by 10%-20%,
and peak value reduced by 5%-13%
when the radium varied from 1KM to
3KM.

Total infection further reduced by 5%-
20% when recommending POIs under
a more general first categories
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Results and findings -- London
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Fig. 5. Simulation results with different parameters for London. The above plots show the new infection daily, and the bottom plots present the total number
of infections from the start day. The peak infection can be reduced at best to 5% and the total infections decline to as low as 22%, compared to 18% and
65% following the original check-in footprints, respectively.
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Results and findings -- London
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Fig. 5. Simulation results with different parameters for London. The above plots show the new infection daily, and the bottom plots present the total number
of infections from the start day. The peak infection can be reduced at best to 5% and the total infections decline to as low as 22%, compared to 18% and
65% following the original check-in footprints, respectively.

This suggests that we can effectively control the disease spread while preserving all the poi visiting needs.




Results and findings -- Berlin&Chicago
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Fig. 7. Simulation results with different parameters for Chicago. The above plots show the new infection daily, and the bottom plots present the total number
of infections from the start day. The peak infection can be reduced at best to 5% and the total infections decline to as low as 22%, compared to 24% and
76% following the original check-in footprints, respectively.
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Results and findings

1 Post recommendation check-in distribution
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Fig. 8. POI popularity distribution (the above sub-figures) and check-in density distribution (the bottom sub-figures: the darker color presents the higher

density).
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Conclusions

1 Proposed a simple but effective method to recommend venues that can reduce the
iInfection spread significantly while persevering all check-in needs.

O Our simulation results using real-world check-in datasets from three different cities
verify our claims: the peak of the infection can be reduced by 5%-20%, and the total
iInfected population can be mitigated by at most 50%.

O Our result is comparable to the case when 50% of check-ins are barred due to
lockdown. Besides, our proposed system is also flexible and scalable to be

customised based on the local COVID-19 condition.
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